scholarly journals DEFINABLE HENSELIAN VALUATIONS

2015 ◽  
Vol 80 (1) ◽  
pp. 85-99 ◽  
Author(s):  
FRANZISKA JAHNKE ◽  
JOCHEN KOENIGSMANN

AbstractIn this note we investigate the question when a henselian valued field carries a nontrivial ∅-definable henselian valuation (in the language of rings). This is clearly not possible when the field is either separably or real closed, and, by the work of Prestel and Ziegler, there are further examples of henselian valued fields which do not admit a ∅-definable nontrivial henselian valuation. We give conditions on the residue field which ensure the existence of a parameter-free definition. In particular, we show that a henselian valued field admits a nontrivial henselian ∅-definable valuation when the residue field is separably closed or sufficiently nonhenselian, or when the absolute Galois group of the (residue) field is nonuniversal.

2002 ◽  
Vol 45 (1) ◽  
pp. 219-227 ◽  
Author(s):  
Kamal Aghigh ◽  
Sudesh K. Khanduja

AbstractLet $v$ be a henselian valuation of a field $K$ with value group $G$, let $\bar{v}$ be the (unique) extension of $v$ to a fixed algebraic closure $\bar{K}$ of $K$ and let $(\tilde{K},\tilde{v})$ be a completion of $(K,v)$. For $\alpha\in\bar{K}\setminus K$, let $M(\alpha,K)$ denote the set $\{\bar{v}(\alpha-\beta):\beta\in\bar{K},\ [K(\beta):K] \lt [K(\alpha):K]\}$. It is known that $M(\alpha,K)$ has an upper bound in $\bar{G}$ if and only if $[K(\alpha):K]=[\tilde{K}(\alpha):\tilde{K}]$, and that the supremum of $M(\alpha,K)$, which is denoted by $\delta_{K}(\alpha)$ (usually referred to as the main invariant of $\alpha$), satisfies a principle similar to the Krasner principle. Moreover, each complete discrete rank 1 valued field $(K,v)$ has the property that $\delta_{K}(\alpha)\in M(\alpha,K)$ for every $\alpha\in\bar{K}\setminus K$. In this paper the authors give a characterization of all those henselian valued fields $(K,v)$ which have the property mentioned above.AMS 2000 Mathematics subject classification: Primary 12J10; 12J25; 13A18


1990 ◽  
Vol 55 (3) ◽  
pp. 1125-1129 ◽  
Author(s):  
Johan Pas

In [10] we introduced a new first order language for valued fields. This language has three sorts of variables, namely variables for elements of the valued field, variables for elements of the residue field and variables for elements of the value group. contains symbols for the standard field, residue field, and value group operations and a function symbol for the valuation. Essential in our language is a function symbol for an angular component map modulo P, which is a map from the field to the residue field (see Definition 1.2).For this language we proved a quantifier elimination theorem for Henselian valued fields of equicharacteristic zero which possess such an angular component map modulo P [10, Theorem 4.1]. In the first section of this paper we give some partial results on the existence of an angular component map modulo P on an arbitrary valued field.By applying the above quantifier elimination theorem to ultraproducts ΠQp/D, we obtained a quantifier elimination, in the language , for the p-adic field Qp; and this elimination is uniform for almost all primes p [10, Corollary 4.3]. In §2 we prove that our language is essentially stronger than the natural language for p-adic fields in the sense that the angular component map modulo P cannot be defined, uniformly for almost all p, in terms of the natural language for p-adic fields.


2020 ◽  
Vol 27 (03) ◽  
pp. 389-404
Author(s):  
Driss Bennis ◽  
Karim Mounirh

Let D be a tame central division algebra over a Henselian valued field E, [Formula: see text] be the residue division algebra of D, [Formula: see text] be the residue field of E, and n be a positive integer. We prove that Mn([Formula: see text]) has a strictly maximal subfield which is Galois (resp., abelian) over [Formula: see text] if and only if Mn(D) has a strictly maximal subfield K which is Galois (resp., abelian) and tame over E with ΓK ⊆ ΓD, where ΓK and ΓD are the value groups of K and D, respectively. This partially generalizes the result proved by Hanke et al. in 2016 for the case n = 1.


2019 ◽  
Vol 5 (2) ◽  
pp. 31
Author(s):  
Akram Lbekkouri

The paper deals with some aspects of general local fields and tries to elucidate some obscure facts. Indeed, several questions remain open, in this domain of research, and literature is getting scarce. Broadly speaking, we present a full description of the absolute Galois group in all cases with answers on the solvability, prosolvability and procyclicity. Furthermore, we give a result that makes "some'' generalization to Abhyankar's Lemma in local case. Half-way a short section, containing a view of some future research loosely discussed, presents an attempt in the development of the theory. An Annexe elucidate several important points, concerning Hilbert's theory.


2021 ◽  
Vol 27 (2) ◽  
pp. 222-223
Author(s):  
Pierre Touchard

AbstractIn this thesis, we study transfer principles in the context of certain Henselian valued fields, namely Henselian valued fields of equicharacteristic $0$ , algebraically closed valued fields, algebraically maximal Kaplansky valued fields, and unramified mixed characteristic Henselian valued fields with perfect residue field. First, we compute the burden of such a valued field in terms of the burden of its value group and its residue field. The burden is a cardinal related to the model theoretic complexity and a notion of dimension associated to $\text {NTP}_2$ theories. We show, for instance, that the Hahn field $\mathbb {F}_p^{\text {alg}}((\mathbb {Z}[1/p]))$ is inp-minimal (of burden 1), and that the ring of Witt vectors $W(\mathbb {F}_p^{\text {alg}})$ over $\mathbb {F}_p^{\text {alg}}$ is not strong (of burden $\omega $ ). This result extends previous work by Chernikov and Simon and realizes an important step toward the classification of Henselian valued fields of finite burden. Second, we show a transfer principle for the property that all types realized in a given elementary extension are definable. It can be written as follows: a valued field as above is stably embedded in an elementary extension if and only if its value group is stably embedded in the corresponding extension of value groups, its residue field is stably embedded in the corresponding extension of residue fields, and the extension of valued fields satisfies a certain algebraic condition. We show, for instance, that all types over the power series field $\mathbb {R}((t))$ are definable. Similarly, all types over the quotient field of $W(\mathbb {F}_p^{\text {alg}})$ are definable. This extends previous work of Cubides and Delon and of Cubides and Ye.These distinct results use a common approach, which has been developed recently. It consists of establishing first a reduction to an intermediate structure called the leading term structure, or $\operatorname {\mathrm {RV}}$ -sort, and then of reducing to the value group and residue field. This leads us to develop similar reduction principles in the context of pure short exact sequences of abelian groups.Abstract prepared by Pierre Touchard.E-mail: [email protected]: https://miami.uni-muenster.de/Record/a612cf73-0a2f-42c4-b1e4-7d28934138a9


2016 ◽  
Vol 229 ◽  
pp. 169-214
Author(s):  
YOSHIYASU OZEKI

Let $K$ be a complete discrete valuation field of mixed characteristic $(0,p)$ with perfect residue field. Let $(\unicode[STIX]{x1D70B}_{n})_{n\geqslant 0}$ be a system of $p$-power roots of a uniformizer $\unicode[STIX]{x1D70B}=\unicode[STIX]{x1D70B}_{0}$ of $K$ with $\unicode[STIX]{x1D70B}_{n+1}^{p}=\unicode[STIX]{x1D70B}_{n}$, and define $G_{s}$ (resp. $G_{\infty }$) the absolute Galois group of $K(\unicode[STIX]{x1D70B}_{s})$ (resp. $K_{\infty }:=\bigcup _{n\geqslant 0}K(\unicode[STIX]{x1D70B}_{n})$). In this paper, we study $G_{s}$-equivariantness properties of $G_{\infty }$-equivariant homomorphisms between torsion crystalline representations.


2015 ◽  
Vol 284 ◽  
pp. 186-212 ◽  
Author(s):  
Lior Bary-Soroker ◽  
Moshe Jarden ◽  
Danny Neftin

2006 ◽  
Vol 80 (1) ◽  
pp. 89-103 ◽  
Author(s):  
Cristian Virdol

AbstractIn this paper we compute and continue meromorphically to the whole complex plane the zeta function for twisted modular curves. The twist of the modular curve is done by a modprepresentation of the absolute Galois group.


Sign in / Sign up

Export Citation Format

Share Document