scholarly journals Exploring Roman and early-medieval habitation of the Rhine–Meuse delta: modelling large-scale demographic changes and corresponding land-use impact

2018 ◽  
Vol 97 (1-2) ◽  
pp. 45-68 ◽  
Author(s):  
Rowin J. van Lanen ◽  
Maurice T.M. de Kleijn ◽  
Marjolein T.I.J. Gouw-Bouman ◽  
Harm Jan Pierik

AbstractIn this study we apply an evidence-based approach to model population-size fluctuations and their corresponding impact on land use during the Roman and early-medieval periods in the Rhine–Meuse delta in the present-day Netherlands. Past-population numbers are reconstructed based on Roman and early-medieval settlement patterns. Corresponding impacts of these demographic fluctuations on potential land use are calculated by integrating the newly developed demographic overviews with archaeological and geoscientific data using a new land-use model termed ‘Past Land-Use Scanner’ (PLUS). The primary aims are to reconstruct first-millennium palaeodemographics and to explore the potential of simulation modelling for testing the feasibility of archaeological hypotheses regarding past land use. Results show that in the study area the first millennium AD was characterised by two periods during which major population growth occurred: the middle-Roman period (AD 70–270) and early-medieval period C (AD 725–950). A major demographic decline of 78–85% occurred during the late-Roman period (AD 270–450), after which first-millennium population numbers never again reached middle-Roman period levels. The modelling outcomes demonstrate that the impact of population fluctuations (growth vs decline) on the limits of the natural landscape during the first millennium in general was low. During these thousand years, the natural landscape almost without exception (only scenario D deviates) provided sufficient options for arable farming, meadows and pastures and was not a limiting factor for population growth. These results underline the added value of simulation modelling for testing the feasibility of archaeological hypotheses and analysing human–landscape interactions in the past.

2021 ◽  
Author(s):  
Courtney Catherine Barajas

Old English Ecotheology examines the impact of environmental crises on early medieval English theology and poetry. Like their modern counterparts, theologians at the turn of the first millennium understood the interconnectedness of the Earth community, and affirmed the independent subjectivity of other-than-humans. The author argues for the existence of a specific Old English ecotheology, and demonstrates the influence of that theology on contemporaneous poetry. Taking the Exeter Book as a microcosm of the poetic corpus, she explores the impact of early medieval apocalypticism and environmental anxiety on Old English wisdom poems, riddles, elegies, and saints' lives.


2021 ◽  
Author(s):  
Courtney Catherine Barajas

This book examines the impact of environmental crises on early medieval English theology and poetry. Like their modern counterparts, theologians at the turn of the first millennium understood the interconnectedness of the Earth community, and affirmed the independent subjectivity of other-than-humans. The author argues for the existence of a specific Old English ecotheology, and demonstrates the influence of that theology on contemporaneous poetry. Taking the Exeter Book as a microcosm of the poetic corpus, she explores the impact of early medieval apocalypticism and environmental anxiety on Old English wisdom poems, riddles, elegies, and saints' lives.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1172 ◽  
Author(s):  
Pankaj Kumar ◽  
Brian Alan Johnson ◽  
Rajarshi Dasgupta ◽  
Ram Avtar ◽  
Shamik Chakraborty ◽  
...  

Due to the cumulative effects of rapid urbanization, population growth and climate change, many inland and coastal water bodies around the world are experiencing severe water pollution. To help make land-use and climate change adaptation policies more effective at a local scale, this study used a combination of participatory approaches and computer simulation modeling. This methodology (called the “Participatory Watershed Land-use Management” (PWLM) approach) consist of four major steps: (a) Scenario analysis, (b) impact assessment, (c) developing adaptation and mitigation measures and its integration in local government policies, and (d) improvement of land use plan. As a test case, we conducted PWLM in the Santa Rosa Sub-watershed of the Philippines, a rapidly urbanizing area outside Metro Manila. The scenario analysis step involved a participatory land-use mapping activity (to understand future likely land-use changes), as well as GCM precipitation and temperature data downscaling (to understand the local climate scenarios). For impact assessment, the Water Evaluation and Planning (WEAP) tool was used to simulate future river water quality (BOD and E. coli) under a Business as Usual (BAU) scenario and several alternative future scenarios considering different drivers and pressures (to 2030). Water samples from the Santa Rosa River in 2015 showed that BOD values ranged from 13 to 52 mg/L; indicating that the river is already moderately to extremely polluted compared to desirable water quality (class B). In the future scenarios, we found that water quality will deteriorate further by 2030 under all scenarios. Population growth was found to have the highest impact on future water quality deterioration, while climate change had the lowest (although not negligible). After the impact assessment, different mitigation measures were suggested in a stakeholder consultation workshop, and of them (enhanced capacity of wastewater treatment plants (WWTPs), and increased sewerage connection rate) were adopted to generate a final scenario including countermeasures. The main benefit of the PWLM approach are its high level of stakeholder involvement (through co-generation of the research) and use of free (for developing countries) software and models, both of which contribute to an enhanced science-policy interface.


Author(s):  
Ibrahim Temima ◽  
Geremew Bethel ◽  
Tesfay Fikrey

Spatial and temporal dynamics of land use/land covers (LULC) are the results of human activities and population growth. The LULC change is caused by both, natural and anthropogenic factors. The objective of this study was to detect LULC changes in Andit Tid watershed. The study has used ArcGIS 10.5 and Landsat images of 1984, 1996, 2008, and 2017 to see LULC changes of Andit Tid watershed. The result indicated that the plantation forest and cultivated land have been increased by 41.94 ha and 33.39 ha, respectively from 1984 to 2017 due to the population increase and improper agricultural activity. On the other hand, the bushland and grassland coverage has been decreased by -7.29 and -67.95 ha, between the study periods respectively. This shows the tempo-spatial dynamic conditions of LULC change in the study watershed. The change of LULC was related mainly to anthropogenic factors such rapid population growth which consequence high demand land for cultivation practices, settlement and grazing land. Thus, attention must give to increase of intensified agricultural activities that increase land productivity to satisfy the ever-increasing demand of cultivated land of high population in the study watershed. A further search on the impact of these LULC changes on the livelihood and ecosystem services is recommended.


Author(s):  
Z. Ahmed ◽  
M. Habib ◽  
H. Sid Ali ◽  
K. Sofiane

The degradation of natural resources in arid and semi-arid areas was highlighted dramatically during this century due to population growth and transformation of land use systems. The Algerian steppe has undergone a regression over the past decade due to drought cycle, the extension of areas cultivated in marginal lands, population growth and overgrazing. These phenomena have led to different degradation processes, such as the destruction of vegetation, soil erosion, and deterioration of the physical environment. In this study, the work is mainly based on the criteria for classification and identification of physical parameters for spatial analysis, and multi-sources factors to determine the vulnerability of steppe formations and their impact on desertification. To do this, we used satellite data Alsat-1 (2009) IRS (2009) and LANDSAT TM (2001). These cross-sectional data with exogenous information could monitor the impact of the semi arid ecological diversity of steppe formations. A hierarchical process including the supervised image classification was used to characterize the main steppe formations. An analysis of the vulnerability of plant was conducted to assign weights and identify areas most susceptible to desertification. Vegetation indices combined with classification are used to characterize the forest and steppe formations to determine changes in land use. The results of this present study provide maps of different components of the steppe, formation that could assist in highlighting the magnitude of the degradation pathways, which affects the steppe environment, allowing an analysis of the process of desertification in the region.


2018 ◽  
Vol 78 (4) ◽  
pp. 1142-1178 ◽  
Author(s):  
Jennifer Alix-Garcia ◽  
Sarah Walker ◽  
Volker Radeloff ◽  
Jacek Kozak

This article examines the impact of the 1850 Austro-Hungarian customs union on production land-use outcomes. Using newly digitized data from the Second Military Survey of the Habsburg Monarchy, we apply a spatial discontinuity design to estimate the impact of trade liberalization on land use. We find that the customs union increased cropland area by 8 percent per year in Hungary between 1850 and 1855, while forestland area decreased by 6 percent. We provide suggestive evidence that this result is not confounded by the emancipation of the serfs, population growth, or technological change in agriculture.


2020 ◽  
Author(s):  
Angelique Lansu ◽  
Jaap Bos ◽  
Wilfried Ivens

<p>In Sub Saharan Africa, many people depend on biomass for their household energy. Charcoal production is a common technique for converting biomass into a useful energy source. Nigeria is the biggest charcoal producer in Sub Saharan Africa. A large amount of wood is harvested from Nigerian forests for this charcoal production for energy. The Nexus of charcoal-land use change-energy imposes a considerable burden on the amount of wood that must be extracted from the forest for charcoal production. Therefore, charcoal production is linked to deforestation and forest degradation. However, it is not clear to what extent the demand for charcoal in Nigeria contributes to deforestation by land use change, and degradation of forests by selected wood logging. In this study, an attempt was made to provide an answer to this and to state which situation could occur by 2030, following the expected population growth in Nigeria. To achieve this, literature and open data on charcoal production, deforestation, forest degradation and population growth in Nigeria have been collected and analysed. Subsequently, calculations were carried out to determine to what extent charcoal production contributed to deforestation in the period 1990-2015. In this period, the share of deforestation due to charcoal production increased from 6% to 14%. If the expected charcoal production in 2030 were to apply to the current situation, this share would be around 20%. The quantity of wood required can also be expressed in numbers of hectares with biomass. In that case, around 80,000 ha would be required in 2030. To validate the findings, further research is needed on the amount of biomass per hectare in Nigerian forests, and on the amount of charcoal exported, not only as source of household energy but also globally as barbecue fuel. A more extensive analysis of open data on the nexus charcoal-land use change-energy at multiple scales will help to project future interlinkages.</p>


Sign in / Sign up

Export Citation Format

Share Document