THE PROJECTIVE DIMENSION OF THE EDGE IDEAL OF A VERY WELL-COVERED GRAPH

2017 ◽  
Vol 230 ◽  
pp. 160-179 ◽  
Author(s):  
KYOUKO KIMURA ◽  
NAOKI TERAI ◽  
SIAMAK YASSEMI

A very well-covered graph is an unmixed graph whose covering number is half of the number of vertices. We construct an explicit minimal free resolution of the cover ideal of a Cohen–Macaulay very well-covered graph. Using this resolution, we characterize the projective dimension of the edge ideal of a very well-covered graph in terms of a pairwise$3$-disjoint set of complete bipartite subgraphs of the graph. We also show nondecreasing property of the projective dimension of symbolic powers of the edge ideal of a very well-covered graph with respect to the exponents.

Author(s):  
Hassan Haghighi ◽  
Mohammad Mosakhani

The purpose of this note is to generalize a result of [M. Dumnicki, T. Szemberg and H. Tutaj-Gasińska, Symbolic powers of planar point configurations II, J. Pure Appl. Alg. 220 (2016) 2001–2016] to higher-dimensional projective spaces and classify all configurations of [Formula: see text]-planes [Formula: see text] in [Formula: see text] with the Waldschmidt constants less than two. We also determine some numerical and algebraic invariants of the defining ideals [Formula: see text] of these classes of configurations, i.e. the resurgence, the minimal free resolution and the regularity of [Formula: see text], as well as the Hilbert function of [Formula: see text].


2017 ◽  
Vol 69 (6) ◽  
pp. 1274-1291 ◽  
Author(s):  
Giuseppe Favacchio ◽  
Elena Guardo

AbstractA current research theme is to compare symbolic powers of an ideal I with the regular powers of I. In this paper, we focus on the case where I = IX is an ideal deûning an almost complete intersection (ACI) set of points X in ℙ1 × ℙ1. In particular, we describe a minimal free bigraded resolution of a non-arithmetically Cohen-Macaulay (also non-homogeneous) set 𝒵 of fat points whose support is an ACI, generalizing an earlier result of Cooper et al. for homogeneous sets of triple points. We call 𝒵 a fat ACI.We also show that its symbolic and ordinary powers are equal, i.e, .


2014 ◽  
Vol 22 (2) ◽  
pp. 217-238 ◽  
Author(s):  
Peter Schenzel ◽  
Sohail Zafar

AbstractLet JG denote the binomial edge ideal of a connected undirected graph on n vertices. This is the ideal generated by the binomials xiyj − xjyi, 1 ≤ i < j≤ n, in the polynomial ring S = K[x1, . . . , xn, y1, . . . , yn] where {i, j} is an edge of G. We study the arithmetic properties of S/JG for G, the complete bipartite graph. In particular we compute dimensions, depths, Castelnuovo-Mumford regularities, Hilbert functions and multiplicities of them. As main results we give an explicit description of the modules of deficiencies, the duals of local cohomology modules, and prove the purity of the minimal free resolution of S/JG.


2019 ◽  
Vol 18 (06) ◽  
pp. 1950118
Author(s):  
Rachelle R. Bouchat ◽  
Tricia Muldoon Brown

We introduce a squarefree monomial ideal associated to the set of domino tilings of a [Formula: see text] rectangle and proceed to study the associated minimal free resolution. In this paper, we use results of Dalili and Kummini to show that the Betti numbers of the ideal are independent of the underlying characteristic of the field, and apply a natural splitting to explicitly determine the projective dimension and Castelnuovo–Mumford regularity of the ideal.


2006 ◽  
Vol 13 (3) ◽  
pp. 411-417
Author(s):  
Edoardo Ballico

Abstract Let 𝑋 be a smooth and connected projective curve. Assume the existence of spanned 𝐿 ∈ Pic𝑎(𝑋), 𝑅 ∈ Pic𝑏(𝑋) such that ℎ0(𝑋, 𝐿) = ℎ0(𝑋, 𝑅) = 2 and the induced map ϕ 𝐿,𝑅 : 𝑋 → 𝐏1 × 𝐏1 is birational onto its image. Here we study the following question. What can be said about the morphisms β : 𝑋 → 𝐏𝑅 induced by a complete linear system |𝐿⊗𝑢⊗𝑅⊗𝑣| for some positive 𝑢, 𝑣? We study the homogeneous ideal and the minimal free resolution of the curve β(𝑋).


2003 ◽  
Vol 10 (1) ◽  
pp. 37-43
Author(s):  
E. Ballico

Abstract We consider the vanishing problem for higher cohomology groups on certain infinite-dimensional complex spaces: good branched coverings of suitable projective spaces and subvarieties with a finite free resolution in a projective space P(V ) (e.g. complete intersections or cones over finitedimensional projective spaces). In the former case we obtain the vanishing result for H 1. In the latter case the corresponding results are only conditional for sheaf cohomology because we do not have the corresponding vanishing theorem for P(V ).


2004 ◽  
Vol 56 (4) ◽  
pp. 716-741 ◽  
Author(s):  
Elena Guardo ◽  
Adam Van Tuyl

AbstractWe study the Hilbert functions of fat points in ℙ1× ℙ1. IfZ⊆ ℙ1× ℙ1is an arbitrary fat point scheme, then it can be shown that for everyiandjthe values of the Hilbert functionHZ(l,j) andHZ(i,l) eventually become constant forl≫ 0. We show how to determine these eventual values by using only the multiplicities of the points, and the relative positions of the points in ℙ1× ℙ1. This enables us to compute all but a finite number values ofHZwithout using the coordinates of points. We also characterize the ACM fat point schemes using our description of the eventual behaviour. In fact, in the case thatZ⊆ ℙ1× ℙ1is ACM, then the entire Hilbert function and its minimal free resolution depend solely on knowing the eventual values of the Hilbert function.


Author(s):  
K. W. Gruenberg

AbstractFor a ZG-lattice A, the nth partial free Euler characteristic εn(A) is defined as the infimum of all where F* varies over all free resolutions of A. It is shown that there exists a stably free resolution E* of A which realises εn(A) for all n≥0 and that the function n → εn(A) is ultimately polynomial no residue classes. The existence of E* is established with the help of new invariants σn(A) of A. These are elements in certain image groups of the projective class group of ZG. When ZG allows cancellation, E* is a minimal free resolution and is essentially unique. When A is periodic, E* is ultimately periodic of period a multiple of the projective period of A.


Sign in / Sign up

Export Citation Format

Share Document