Concentration of positive solutions for a class of fractional p-Kirchhoff type equations

Author(s):  
Vincenzo Ambrosio ◽  
Teresa Isernia ◽  
Vicenţiu D. Radulescu

Abstract We study the existence and concentration of positive solutions for the following class of fractional p-Kirchhoff type problems: $$ \left\{\begin{array}{@{}ll} \left(\varepsilon^{sp}a+\varepsilon^{2sp-3}b \,[u]_{s, p}^{p}\right)(-\Delta)_{p}^{s}u+V(x)u^{p-1}=f(u) & \text{in}\ \mathbb{R}^{3},\\ \noalign{ u\in W^{s, p}(\mathbb{R}^{3}), \quad u>0 & \text{in}\ \mathbb{R}^{3}, \end{array}\right.$$ where ɛ is a small positive parameter, a and b are positive constants, s ∈ (0, 1) and p ∈ (1, ∞) are such that $sp \in (\frac {3}{2}, 3)$ , $(-\Delta )^{s}_{p}$ is the fractional p-Laplacian operator, f: ℝ → ℝ is a superlinear continuous function with subcritical growth and V: ℝ3 → ℝ is a continuous potential having a local minimum. We also prove a multiplicity result and relate the number of positive solutions with the topology of the set where the potential V attains its minimum values. Finally, we obtain an existence result when f(u) = uq−1 + γur−1, where γ > 0 is sufficiently small, and the powers q and r satisfy 2p < q < p* s  ⩽ r. The main results are obtained by using some appropriate variational arguments.

2018 ◽  
Vol 61 (4) ◽  
pp. 1023-1040 ◽  
Author(s):  
Jianjun Zhang ◽  
David G. Costa ◽  
João Marcos do Ó

AbstractWe are concerned with the following Kirchhoff-type equation$$ - \varepsilon ^2M\left( {\varepsilon ^{2 - N}\int_{{\open R}^N} {\vert \nabla u \vert^2{\rm d}x} } \right)\Delta u + V(x)u = f(u),\quad x \in {{\open R}^N},\quad N{\rm \ges }2,$$whereM ∈ C(ℝ+, ℝ+),V ∈ C(ℝN, ℝ+) andf(s) is of critical growth. In this paper, we construct a localized bound state solution concentrating at a local minimum ofVasε → 0 under certain conditions onf(s),MandV. In particular, the monotonicity off(s)/sand the Ambrosetti–Rabinowitz condition are not required.


2018 ◽  
Vol 26 (1) ◽  
pp. 5-41 ◽  
Author(s):  
Baoqiang Yan ◽  
Donal O’Regan ◽  
Ravi P. Agarwal

Abstract In this paper we discuss the existence of a solution between wellordered subsolution and supersolution of the Kirchhoff equation. Using the sub-supersolution method together with a Rabinowitz-type global bifurcation theory, we establish the existence of positive solutions for Kirchhoff-type problems when the nonlinearity is singular or sign-changing. Moreover, we obtain some necessary and sufficient conditions for the existence of positive solutions for the problem when N = 1.


2017 ◽  
Vol 17 (4) ◽  
pp. 661-676 ◽  
Author(s):  
Xiao-Jing Zhong ◽  
Chun-Lei Tang

AbstractIn this paper, we investigate a class of Kirchhoff type problems in {\mathbb{R}^{3}} involving a critical nonlinearity, namely,-\biggl{(}1+b\int_{\mathbb{R}^{3}}\lvert\nabla u|^{2}\,dx\biggr{)}\triangle u=% \lambda f(x)u+|u|^{4}u,\quad u\in D^{1,2}(\mathbb{R}^{3}),where {b>0}, {\lambda>\lambda_{1}} and {\lambda_{1}} is the principal eigenvalue of {-\triangle u=\lambda f(x)u}, {u\in D^{1,2}(\mathbb{R}^{3})}. We prove that there exists {\delta>0} such that the above problem has at least two positive solutions for {\lambda_{1}<\lambda<\lambda_{1}+\delta}. Furthermore, we obtain the existence of ground state solutions. Our tools are the Nehari manifold and the concentration compactness principle. This paper can be regarded as an extension of Naimen’s work [21].


Sign in / Sign up

Export Citation Format

Share Document