A generalized skein relation for Khovanov homology and a categorification of the θ-invariant

Author(s):  
M. Chlouveraki ◽  
D. Goundaroulis ◽  
A. Kontogeorgis ◽  
S. Lambropoulou

The Jones polynomial is a famous link invariant that can be defined diagrammatically via a skein relation. Khovanov homology is a richer link invariant that categorifies the Jones polynomial. Using spectral sequences, we obtain a skein-type relation satisfied by the Khovanov homology. Thanks to this relation, we are able to generalize the Khovanov homology in order to obtain a categorification of the θ-invariant, which is itself a generalization of the Jones polynomial.

2009 ◽  
Vol 18 (12) ◽  
pp. 1651-1662
Author(s):  
ROBERT G. TODD

In A Volumish Theorem for the Jones Polynomial, by O. Dasbach and X. S. Lin, it was shown that the sum of the absolute value of the second and penultimate coefficient of the Jones polynomial of an alternating knot is equal to the twist number of the knot. Here we give a new proof of this result using Khovanov homology. The proof is by induction on the number of crossings using the long exact sequence in Khovanov homology corresponding to the Kauffman bracket skein relation.


2020 ◽  
Vol 29 (07) ◽  
pp. 2050051
Author(s):  
Noboru Ito ◽  
Jun Yoshida

Khovanov homology is a categorification of the Jones polynomial, so it may be seen as a kind of quantum invariant of knots and links. Although polynomial quantum invariants are deeply involved with Vassiliev (aka. finite type) invariants, the relation remains unclear in case of Khovanov homology. Aiming at it, in this paper, we discuss a categorified version of Vassiliev skein relation on Khovanov homology. More precisely, we will show that the “genus-one” operation gives rise to a crossing change on Khovanov complexes. Invariance under Reidemeister moves turns out, and it enables us to extend Khovanov homology to singular links. We then see that a long exact sequence of Khovanov homology groups categorifies Vassiliev skein relation for the Jones polynomials. In particular, the Jones polynomial is recovered even for singular links. We in addition discuss the FI relation on Khovanov homology.


2009 ◽  
Vol 18 (06) ◽  
pp. 825-840 ◽  
Author(s):  
J. JUYUMAYA ◽  
S. LAMBROPOULOU

In this paper we introduce a Jones-type invariant for singular knots, using a Markov trace on the Yokonuma–Hecke algebras Y d,n(u) and the theory of singular braids. The Yokonuma–Hecke algebras have a natural topological interpretation in the context of framed knots. Yet, we show that there is a homomorphism of the singular braid monoid SBn into the algebra Y d,n(u). Surprisingly, the trace does not normalize directly to yield a singular link invariant, so a condition must be imposed on the trace variables. Assuming this condition, the invariant satisfies a skein relation involving singular crossings, which arises from a quadratic relation in the algebra Y d,n(u).


2006 ◽  
Vol 15 (10) ◽  
pp. 1279-1301
Author(s):  
N. AIZAWA ◽  
M. HARADA ◽  
M. KAWAGUCHI ◽  
E. OTSUKI

All polynomial invariants of links for two dimensional solutions of Yang–Baxter equation is constructed by employing Turaev's method. As a consequence, it is proved that the best invariant so constructed is the Jones polynomial and there exist three solutions connecting to the Alexander polynomial. Invariants for higher dimensional solutions, obtained by the so-called dressings, are also investigated. It is observed that the dressings do not improve link invariant unless some restrictions are put on dressed solutions.


Symmetry ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 720
Author(s):  
Young Kwun ◽  
Abdul Nizami ◽  
Mobeen Munir ◽  
Zaffar Iqbal ◽  
Dishya Arshad ◽  
...  

Khovanov homology is a categorication of the Jones polynomial. It consists of graded chain complexes which, up to chain homotopy, are link invariants, and whose graded Euler characteristic is equal to the Jones polynomial of the link. In this article we give some Khovanov homology groups of 3-strand braid links Δ 2 k + 1 = x 1 2 k + 2 x 2 x 1 2 x 2 2 x 1 2 ⋯ x 2 2 x 1 2 x 1 2 , Δ 2 k + 1 x 2 , and Δ 2 k + 1 x 1 , where Δ is the Garside element x 1 x 2 x 1 , and which are three out of all six classes of the general braid x 1 x 2 x 1 x 2 ⋯ with n factors.


2020 ◽  
Vol 20 (2) ◽  
pp. 531-564
Author(s):  
Andrew Lobb ◽  
Raphael Zentner

2017 ◽  
Vol 26 (03) ◽  
pp. 1741002 ◽  
Author(s):  
Mustafa Hajij

Using the colored Kauffman skein relation, we study the highest and lowest [Formula: see text] coefficients of the [Formula: see text] unreduced colored Jones polynomial of alternating links. This gives a natural extension of a result by Kauffman in regard with the Jones polynomial of alternating links and its highest and lowest coefficients. We also use our techniques to give a new and natural proof for the existence of the tail of the colored Jones polynomial for alternating links.


2014 ◽  
Vol 23 (14) ◽  
pp. 1450078 ◽  
Author(s):  
Lawrence P. Roberts

In [A type D structure in Khovanov homology, preprint (2013), arXiv:1304.0463; A type A structure in Khovanov homology, preprint (2013), arXiv:1304.0465] the author constructed a package which describes how to decompose the Khovanov homology of a link ℒ into the algebraic pairing of a type D structure and a type A structure (as defined in bordered Floer homology), whenever a diagram for ℒ is decomposed into the union of two tangles. Since Khovanov homology is the categorification of a version of the Jones polynomial, it is natural to ask what the types A and D structures categorify, and how their pairing is encoded in the decategorifications. In this paper, the author constructs the decategorifications of these two structures, in a manner similar to I. Petkova's decategorification of bordered Floer homology, [The decategorification of bordered Heegaard-Floer homology, preprint (2012), arXiv:1212.4529v1], and shows how they recover the Jones polynomial. We also use the decategorifications to compare this approach to tangle decompositions with M. Khovanov's from [A functor-valued invariant of tangles, Algebr. Geom. Topol.2 (2002) 665–741].


2012 ◽  
Author(s):  
Louis H. Kauffman ◽  
Samuel J. Lomonaco

Sign in / Sign up

Export Citation Format

Share Document