scholarly journals Weighted faces of Poisson hyperplane tessellations

2009 ◽  
Vol 41 (03) ◽  
pp. 682-694 ◽  
Author(s):  
Rolf Schneider

We study lower-dimensional volume-weighted typical faces of a stationary Poisson hyperplane tessellation in d-dimensional Euclidean space. After showing how their distribution can be derived from that of the zero cell, we obtain sharp lower and upper bounds for the expected vertex number of the volume-weighted typical k-face (k=2,…,d). The bounds are respectively attained by parallel mosaics and by isotropic tessellations. We conclude with a remark on expected face numbers and expected intrinsic volumes of the zero cell.

2009 ◽  
Vol 41 (3) ◽  
pp. 682-694 ◽  
Author(s):  
Rolf Schneider

We study lower-dimensional volume-weighted typical faces of a stationary Poisson hyperplane tessellation in d-dimensional Euclidean space. After showing how their distribution can be derived from that of the zero cell, we obtain sharp lower and upper bounds for the expected vertex number of the volume-weighted typical k-face (k=2,…,d). The bounds are respectively attained by parallel mosaics and by isotropic tessellations. We conclude with a remark on expected face numbers and expected intrinsic volumes of the zero cell.


2014 ◽  
Vol 46 (3) ◽  
pp. 622-642 ◽  
Author(s):  
Julia Hörrmann ◽  
Daniel Hug

We study a parametric class of isotropic but not necessarily stationary Poisson hyperplane tessellations in n-dimensional Euclidean space. Our focus is on the volume of the zero cell, i.e. the cell containing the origin. As a main result, we obtain an explicit formula for the variance of the volume of the zero cell in arbitrary dimensions. From this formula we deduce the asymptotic behaviour of the volume of the zero cell as the dimension goes to ∞.


2014 ◽  
Vol 46 (4) ◽  
pp. 919-936
Author(s):  
Daniel Hug ◽  
Rolf Schneider

We consider a stationary Poisson hyperplane process with given directional distribution and intensity in d-dimensional Euclidean space. Generalizing the zero cell of such a process, we fix a convex body K and consider the intersection of all closed halfspaces bounded by hyperplanes of the process and containing K. We study how well these random polytopes approximate K (measured by the Hausdorff distance) if the intensity increases, and how this approximation depends on the directional distribution in relation to properties of K.


2011 ◽  
Vol 43 (2) ◽  
pp. 308-321 ◽  
Author(s):  
Daniel Hug ◽  
Rolf Schneider

For stationary Poisson hyperplane tessellations in d-dimensional Euclidean space and a dimension k ∈ {1, …, d}, we investigate the typical k-face and the weighted typical k-face (weighted by k-dimensional volume), without isotropy assumptions on the tessellation. The case k = d concerns the previously studied typical cell and zero cell, respectively. For k < d, we first find the conditional distribution of the typical k-face or weighted typical k-face, given its direction. Then we investigate how the shapes of the faces are influenced by assumptions of different types: either via containment of convex bodies of given volume (including a new result for k = d), or, for weighted typical k-faces, in the spirit of D. G. Kendall's asymptotic problem, suitably generalized. In all these results on typical or weighted typical k-faces with given direction space L, the Blaschke body of the section process of the underlying hyperplane process with L plays a crucial role.


2014 ◽  
Vol 46 (03) ◽  
pp. 622-642 ◽  
Author(s):  
Julia Hörrmann ◽  
Daniel Hug

We study a parametric class of isotropic but not necessarily stationary Poisson hyperplane tessellations in n-dimensional Euclidean space. Our focus is on the volume of the zero cell, i.e. the cell containing the origin. As a main result, we obtain an explicit formula for the variance of the volume of the zero cell in arbitrary dimensions. From this formula we deduce the asymptotic behaviour of the volume of the zero cell as the dimension goes to ∞.


2014 ◽  
Vol 46 (04) ◽  
pp. 919-936 ◽  
Author(s):  
Daniel Hug ◽  
Rolf Schneider

We consider a stationary Poisson hyperplane process with given directional distribution and intensity ind-dimensional Euclidean space. Generalizing the zero cell of such a process, we fix a convex bodyKand consider the intersection of all closed halfspaces bounded by hyperplanes of the process and containingK. We study how well these random polytopes approximateK(measured by the Hausdorff distance) if the intensity increases, and how this approximation depends on the directional distribution in relation to properties ofK.


Author(s):  
Sean Dewar

Abstract We present a rigorous study of framework rigidity in general finite dimensional normed spaces from the perspective of Lie group actions on smooth manifolds. As an application, we prove an extension of Asimow and Roth’s 1978/1979 result establishing the equivalence of local, continuous and infinitesimal rigidity for regular bar-and-joint frameworks in a d-dimensional Euclidean space. Further, we obtain upper bounds for the dimension of the space of trivial motions for a framework and establish the flexibility of small frameworks in general non-Euclidean normed spaces.


2010 ◽  
Vol 42 (3) ◽  
pp. 605-619 ◽  
Author(s):  
I. Bárány ◽  
F. Fodor ◽  
V. Vígh

Let K be a d-dimensional convex body with a twice continuously differentiable boundary and everywhere positive Gauss-Kronecker curvature. Denote by Kn the convex hull of n points chosen randomly and independently from K according to the uniform distribution. Matching lower and upper bounds are obtained for the orders of magnitude of the variances of the sth intrinsic volumes Vs(Kn) of Kn for s ∈ {1,…,d}. Furthermore, strong laws of large numbers are proved for the intrinsic volumes of Kn. The essential tools are the economic cap covering theorem of Bárány and Larman, and the Efron-Stein jackknife inequality.


2012 ◽  
Vol 24 (08) ◽  
pp. 1250021 ◽  
Author(s):  
JEAN-CLAUDE CUENIN

We present new results on the block-diagonalization of operators with spectral gaps, based on a method of Langer and Tretter, and apply them to Dirac operators on three-dimensional Euclidean space with unbounded potentials. For the Coulomb potential, we achieve an exact diagonalization up to nuclear charge Z = 124 (which covers all chemical elements) and prove the convergence of an approximate block-diagonalization up to Z = 62, thus considerably improving the upper bounds Z = 93 and Z = 51, respectively, established by Siedentop and Stockmeyer.


2010 ◽  
Vol 42 (03) ◽  
pp. 605-619
Author(s):  
I. Bárány ◽  
F. Fodor ◽  
V. Vígh

LetKbe ad-dimensional convex body with a twice continuously differentiable boundary and everywhere positive Gauss-Kronecker curvature. Denote byKnthe convex hull ofnpoints chosen randomly and independently fromKaccording to the uniform distribution. Matching lower and upper bounds are obtained for the orders of magnitude of the variances of thesth intrinsic volumesVs(Kn) ofKnfors∈ {1,…,d}. Furthermore, strong laws of large numbers are proved for the intrinsic volumes ofKn. The essential tools are the economic cap covering theorem of Bárány and Larman, and the Efron-Stein jackknife inequality.


Sign in / Sign up

Export Citation Format

Share Document