scholarly journals Sur les cones (faiblement complets) contenus dans le dual d'un espace de Banach non-reflexif

1989 ◽  
Vol 39 (3) ◽  
pp. 321-328 ◽  
Author(s):  
Richard Becker

Let B be a Banach space. consider the convex proper weakly complete cones X contained in B′ with σ(B′, B) such that X ∩ B′, is conic in the sense of Asimow: that is, there exists α ≥ 0 and f ∈ B″ such that ‖ ‖B ≤ f ≤ α·‖ ‖B on X. This class arises in the theory of integral representations.If B is reflexive, such a cone has a weakly-compact basis. This paper considers the converse problem:- if one requires that X ∩ B′1 be σ(B′, B) metrisable, the existence of X (without a compact σ(B′, B) basis) is equivalent to the statement that B is not a Grothendieck space.However, in every space C(K) with infinitely compact K, one can find such a cone X. If two such cones in B′ are not too far apart, their sum belongs to this class.

1993 ◽  
Vol 35 (2) ◽  
pp. 207-217 ◽  
Author(s):  
Denny H. Leung

A Banach space E is said to have Property (w) if every operator from E into E' is weakly compact. This property was introduced by E. and P. Saab in [9]. They observe that for Banach lattices, Property (w) is equivalent to Property (V*), which in turn is equivalent to the Banach lattice having a weakly sequentially complete dual. Thus the following question was raised in [9].Does every Banach space with Property (w) have a weakly sequentially complete dual, or even Property (V*)?In this paper, we give two examples, both of which answer the question in the negative. Both examples are James type spaces considered in [1]. They both possess properties stronger than Property (w). The first example has the property that every operator from the space into the dual is compact. In the second example, both the space and its dual have Property (w). In the last section we establish some partial results concerning the problem (also raised in [9]) of whether (w) passes from a Banach space E to C(K, E).


1999 ◽  
Vol 42 (2) ◽  
pp. 139-148 ◽  
Author(s):  
José Bonet ◽  
Paweł Dománski ◽  
Mikael Lindström

AbstractEvery weakly compact composition operator between weighted Banach spaces of analytic functions with weighted sup-norms is compact. Lower and upper estimates of the essential norm of continuous composition operators are obtained. The norms of the point evaluation functionals on the Banach space are also estimated, thus permitting to get new characterizations of compact composition operators between these spaces.


1980 ◽  
Vol 32 (2) ◽  
pp. 421-430 ◽  
Author(s):  
Teck-Cheong Lim

Let X be a Banach space and B a bounded subset of X. For each x ∈ X, define R(x) = sup{‖x – y‖ : y ∈ B}. If C is a nonempty subset of X, we call the number R = inƒ{R(x) : x ∈ C} the Chebyshev radius of B in C and the set the Chebyshev center of B in C. It is well known that if C is weakly compact and convex, then and if, in addition, X is uniformly convex, then the Chebyshev center is unique; see e.g., [9].Let {Bα : α ∈ ∧} be a decreasing net of bounded subsets of X. For each x ∈ X and each α ∈ ∧, define


1977 ◽  
Vol 29 (5) ◽  
pp. 963-970 ◽  
Author(s):  
Mark A. Smith

In a Banach space, the directional modulus of rotundity, δ (ϵ, z), measures the minimum depth at which the midpoints of all chords of the unit ball which are parallel to z and of length at least ϵ are buried beneath the surface. A Banach space is uniformly rotund in every direction (URED) if δ (ϵ, z) is positive for every positive ϵ and every nonzero element z. This concept of directionalized uniform rotundity was introduced by Garkavi [6] to characterize those Banach spaces in which every bounded subset has at most one Čebyšev center.


1976 ◽  
Vol 19 (1) ◽  
pp. 7-12 ◽  
Author(s):  
Joseph Bogin

In [7], Goebel, Kirk and Shimi proved the following:Theorem. Let X be a uniformly convex Banach space, K a nonempty bounded closed and convex subset of X, and F:K→K a continuous mapping satisfying for each x, y∈K:(1)where ai≥0 and Then F has a fixed point in K.In this paper we shall prove that this theorem remains true in any Banach space X, provided that K is a nonempty, weakly compact convex subset of X and has normal structure (see Definition 1 below).


Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 863 ◽  
Author(s):  
Luisa Di Piazza ◽  
Kazimierz Musiał

We give a short overview on the decomposition property for integrable multifunctions, i.e., when an “integrable in a certain sense” multifunction can be represented as a sum of one of its integrable selections and a multifunction integrable in a narrower sense. The decomposition theorems are important tools of the theory of multivalued integration since they allow us to see an integrable multifunction as a translation of a multifunction with better properties. Consequently, they provide better characterization of integrable multifunctions under consideration. There is a large literature on it starting from the seminal paper of the authors in 2006, where the property was proved for Henstock integrable multifunctions taking compact convex values in a separable Banach space X. In this paper, we summarize the earlier results, we prove further results and present tables which show the state of art in this topic.


Author(s):  
Michael Edelstein ◽  
Daryl Tingley

AbstractSeveral procedures for locating fixed points of nonexpansive selfmaps of a weakly compact convex subset of a Banach space are presented. Some of the results involve the notion of an asymptotic center or a Chebyshev center.


2012 ◽  
Vol 2012 ◽  
pp. 1-7
Author(s):  
Danyal Soybaş

A Banach space is said to have (D) property if every bounded linear operator is weakly compact for every Banach space whose dual does not contain an isomorphic copy of . Studying this property in connection with other geometric properties, we show that every Banach space whose dual has (V∗) property of Pełczyński (and hence every Banach space with (V) property) has (D) property. We show that the space of real functions, which are integrable with respect to a measure with values in a Banach space , has (D) property. We give some other results concerning Banach spaces with (D) property.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Moosa Gabeleh ◽  
Naseer Shahzad

LetAandBbe two nonempty subsets of a Banach spaceX. A mappingT:A∪B→A∪Bis said to be cyclic relatively nonexpansive ifT(A)⊆BandT(B)⊆AandTx-Ty≤x-yfor all (x,y)∈A×B. In this paper, we introduce a geometric notion of seminormal structure on a nonempty, bounded, closed, and convex pair of subsets of a Banach spaceX. It is shown that if (A,B) is a nonempty, weakly compact, and convex pair and (A,B) has seminormal structure, then a cyclic relatively nonexpansive mappingT:A∪B→A∪Bhas a fixed point. We also discuss stability of fixed points by using the geometric notion of seminormal structure. In the last section, we discuss sufficient conditions which ensure the existence of best proximity points for cyclic contractive type mappings.Erratum to “Seminormal Structure and Fixed Points of Cyclic Relatively Nonexpansive Mappings”


Sign in / Sign up

Export Citation Format

Share Document