scholarly journals Tensor products of function algebras

1987 ◽  
Vol 36 (3) ◽  
pp. 417-423 ◽  
Author(s):  
Athanasios Kyriazis

For appropriate topclogical spaces X, Y, Z the algebra Cc(X xZY) of ℂ-valued continuous functions on the fibre product X xZY in the compact-open topology, describes the completed biprojective Cc(Z)-tensor product of Cc(X), Cc(Y).

2021 ◽  
pp. 1-14
Author(s):  
R.M. CAUSEY

Abstract Galego and Samuel showed that if K, L are metrizable, compact, Hausdorff spaces, then $C(K)\widehat{\otimes}_\pi C(L)$ is c0-saturated if and only if it is subprojective if and only if K and L are both scattered. We remove the hypothesis of metrizability from their result and extend it from the case of the twofold projective tensor product to the general n-fold projective tensor product to show that for any $n\in\mathbb{N}$ and compact, Hausdorff spaces K1, …, K n , $\widehat{\otimes}_{\pi, i=1}^n C(K_i)$ is c0-saturated if and only if it is subprojective if and only if each K i is scattered.


Author(s):  
Abraham Rueda Zoca ◽  
Pedro Tradacete ◽  
Ignacio Villanueva

We study the Daugavet property in tensor products of Banach spaces. We show that $L_{1}(\unicode[STIX]{x1D707})\widehat{\otimes }_{\unicode[STIX]{x1D700}}L_{1}(\unicode[STIX]{x1D708})$ has the Daugavet property when $\unicode[STIX]{x1D707}$ and $\unicode[STIX]{x1D708}$ are purely non-atomic measures. Also, we show that $X\widehat{\otimes }_{\unicode[STIX]{x1D70B}}Y$ has the Daugavet property provided $X$ and $Y$ are $L_{1}$ -preduals with the Daugavet property, in particular, spaces of continuous functions with this property. With the same techniques, we also obtain consequences about roughness in projective tensor products as well as the Daugavet property of projective symmetric tensor products.


1999 ◽  
Vol 6 (1) ◽  
pp. 33-44 ◽  
Author(s):  
A. K. Katsaras ◽  
A. Beloyiannis

Abstract It is shown that the completion of the tensor product of two non-Archimedean weighted spaces of continuous functions is topologically isomorphic to another weighted space. Several applications of this result are given.


2021 ◽  
Vol 8 (1) ◽  
pp. 48-59
Author(s):  
Fernanda Botelho ◽  
Richard J. Fleming

Abstract Given Banach spaces X and Y, we ask about the dual space of the 𝒧(X, Y). This paper surveys results on tensor products of Banach spaces with the main objective of describing the dual of spaces of bounded operators. In several cases and under a variety of assumptions on X and Y, the answer can best be given as the projective tensor product of X ** and Y *.


2001 ◽  
Vol 70 (3) ◽  
pp. 323-336 ◽  
Author(s):  
T. S. S. R. K. Rao ◽  
A. K. Roy

AbstractIn this paper we give a complete description of diameter-preserving linear bijections on the space of affine continuous functions on a compact convex set whose extreme points are split faces. We also give a description of such maps on function algebras considered on their maximal ideal space. We formulate and prove similar results for spaces of vector-valued functions.


2018 ◽  
Vol 2018 ◽  
pp. 1-5 ◽  
Author(s):  
Juan Carlos Ferrando

We characterize in terms of the topology of a Tychonoff space X the existence of a bounded resolution for CcX that swallows the bounded sets, where CcX is the space of real-valued continuous functions on X equipped with the compact-open topology.


1975 ◽  
Vol 78 (2) ◽  
pp. 301-307 ◽  
Author(s):  
Simon Wassermann

A deep result in the theory of W*-tensor products, the Commutation theorem, states that if M and N are W*-algebras faithfully represented as von Neumann algebras on the Hilbert spaces H and K, respectively, then the commutant in L(H ⊗ K) of the W*-tensor product of M and N coincides with the W*-tensor product of M′ and N′. Although special cases of this theorem were established successively by Misonou (2) and Sakai (3), the validity of the general result remained conjectural until the advent of the Tomita-Takesaki theory of Modular Hilbert algebras (6). As formulated, the Commutation theorem is a spatial result; that is, the W*-algebras in its statement are taken to act on specific Hilbert spaces. Not surprisingly, therefore, known proofs rely heavily on techniques of representation theory.


1979 ◽  
Vol 31 (4) ◽  
pp. 890-896 ◽  
Author(s):  
Seki A. Choo

In this paper, X denotes a completely regular Hausdorff space, Cb(X) all real-valued bounded continuous functions on X, E a Hausforff locally convex space over reals R, Cb(X, E) all bounded continuous functions from X into E, Cb(X) ⴲ E the tensor product of Cb(X) and E. For locally convex spaces E and F, E ⴲ, F denotes the tensor product with the topology of uniform convergence on sets of the form S X T where S and T are equicontinuous subsets of E′, F′ the topological duals of E, F respectively ([11], p. 96). For a locally convex space G , G ′ will denote its topological dual.


1972 ◽  
Vol 15 (2) ◽  
pp. 235-238
Author(s):  
E. A. Magarian ◽  
J. L. Motto

Relatively little is known about the ideal structure of A⊗RA' when A and A' are R-algebras. In [4, p. 460], Curtis and Reiner gave conditions that imply certain tensor products are semi-simple with minimum condition. Herstein considered when the tensor product has zero Jacobson radical in [6, p. 43]. Jacobson [7, p. 114] studied tensor products with no two-sided ideals, and Rosenberg and Zelinsky investigated semi-primary tensor products in [9].All rings considered in this paper are assumed to be commutative with identity. Furthermore, R will always denote a field.


1976 ◽  
Vol 19 (4) ◽  
pp. 385-402 ◽  
Author(s):  
Bernhard Banaschewski ◽  
Evelyn Nelson

The binary tensor product, for modules over a commutative ring, has two different aspects: its connection with universal bilinear maps and its adjointness to the internal hom-functor. Furthermore, in the special situation of finite-dimensional vector spaces, the tensor product can also be described in terms of dual spaces and the internal hom-functor. The aim of this paper is to investigate these relationships in the setting of arbitrary concrete categories.


Sign in / Sign up

Export Citation Format

Share Document