scholarly journals Polynomial density of commutative semigroups

1993 ◽  
Vol 48 (1) ◽  
pp. 151-162 ◽  
Author(s):  
Andrzej Kisielewicz ◽  
Norbert Newrly

An algebra is said to be polynomially n−dense if all equational theories extending the equational theory of the algebra with constants have a relative base consisting of equations in no more than n variables. In this paper, we investigate polynomial density of commutative semigroups. In particular, we prove that, for n > 1, a commutative semigroup is (n − 1)-dense if and only if its subsemigroup consisting of all n−factor-products is either a monoid or a union of groups of a bounded order. Moreover, a commutative semigroup is 0-dense if and only if it is a bounded semilattice. For semilattices, we give a full description of the corresponding lattices of equational theories.

2021 ◽  
Author(s):  
Ryszard Mazurek

AbstractFor any commutative semigroup S and positive integer m the power function $$f: S \rightarrow S$$ f : S → S defined by $$f(x) = x^m$$ f ( x ) = x m is an endomorphism of S. We partly solve the Lesokhin–Oman problem of characterizing the commutative semigroups whose all endomorphisms are power functions. Namely, we prove that every endomorphism of a commutative monoid S is a power function if and only if S is a finite cyclic group, and that every endomorphism of a commutative ACCP-semigroup S with an idempotent is a power function if and only if S is a finite cyclic semigroup. Furthermore, we prove that every endomorphism of a nontrivial commutative atomic monoid S with 0, preserving 0 and 1, is a power function if and only if either S is a finite cyclic group with zero adjoined or S is a cyclic nilsemigroup with identity adjoined. We also prove that every endomorphism of a 2-generated commutative semigroup S without idempotents is a power function if and only if S is a subsemigroup of the infinite cyclic semigroup.


1992 ◽  
Vol 34 (2) ◽  
pp. 133-141 ◽  
Author(s):  
A. V. Kelarev

A description of regular group rings is well known (see [12]). Various authors have considered regular semigroup rings (see [17], [8], [10], [11], [4]). These rings have been characterized for many important classes of semigroups, although the general problem turns out to be rather difficult and still has not got a complete solution. It seems natural to describe the regular radical in semigroup rings for semigroups of the classes mentioned. In [10], the regular semigroup rings of commutative semigroups were described. The aim of the present paper is to characterize the regular radical ρ(R[S]) for each associative ring R and commutative semigroup S.


2008 ◽  
Vol 145 (3) ◽  
pp. 579-586 ◽  
Author(s):  
NEIL HINDMAN ◽  
DONA STRAUSS

AbstractA base for a commutative semigroup (S, +) is an indexed set 〈xt〉t∈A in S such that each element x ∈ S is uniquely representable as Σt∈Fxt where F is a finite subset of A and, if S has an identity 0, then 0 = Σn∈Øxt. We investigate those commutative semigroups or groups which have a base. We obtain the surprising result that has a base. More generally, we show that an abelian group has a base if and only if it has no elements of odd finite order.


1989 ◽  
Vol 54 (3) ◽  
pp. 1018-1022 ◽  
Author(s):  
Peter Perkins

A computable groupoid is an algebra ‹N, g› where N is the set of natural numbers and g is a recursive (total) binary operation on N. A set L of natural numbers is a computable list of computable groupoids iff L is recursive, ‹N, ϕe› is a computable groupoid for each e ∈ L, and e ∈ L whenever e codes a primitive recursive description of a binary operation on N.Theorem 1. Let L be any computable list of computable groupoids. The set {e ∈ L: the equational theory of ‹N, ϕe› is finitely axiomatizable} is not recursive.Theorem 2. Let S be any recursive set of positive integers. A computable groupoid GS can be constructed so that S is inifinite iff GS has a finitely axiomatizable equational theory.The problem of deciding which finite algebras have finitely axiomatizable equational theories has remained open since it was first posed by Tarski in the early 1960's. Indeed, it is still not known whether the set of such finite algebras is recursively (or corecursively) enumerable. McKenzie [7] has shown that this question of finite axiomatizability for any (finite) algebra of finite type can be reduced to that for a (finite) groupoid.


1990 ◽  
Vol 108 (3) ◽  
pp. 429-433 ◽  
Author(s):  
A. V. Kelarev

Many authors have considered the radicals of semigroup rings of commutative semigroups. A list of the papers pertaining to this field is contained in [4]. In [1] Amitsur proved that, for any associative ring R and for every free commutative semigroup S, the equalities B(RS) = B(R)S and L(RS) = L(R)S hold, where B is the Baer radical and L is the Levitsky radical. A natural problem which arises is to describe semigroup rings RS such that π(RS) = π(R)S, where π is one of the most important radicals. For the Baer and Levitsky radicals and commutative semigroups a complete solution of the above problem follows from theorems 2·8 and 3·1 of [15].


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Jaeyoung Chung ◽  
Prasanna K. Sahoo

LetSbe a nonunital commutative semigroup,σ:S→San involution, andCthe set of complex numbers. In this paper, first we determine the general solutionsf,g:S→Cof Wilson’s generalizations of d’Alembert’s functional equations  fx+y+fx+σy=2f(x)g(y)andfx+y+fx+σy=2g(x)f(y)on nonunital commutative semigroups, and then using the solutions of these equations we solve a number of other functional equations on more general domains.


Author(s):  
Dr. D. Mrudula Devi Et. al.

This paper deals with some results on commutative semigroups. We consider (s,.) is externally commutative right zero semigroup is regular if it is intra regular and (s,.) is externally commutative semigroup then every inverse semigroup  is u – inverse semigroup. We will also prove that if (S,.) is a H -  semigroup then weakly cancellative laws hold in H - semigroup. In one case we will take (S,.) is commutative left regular semi group and we will prove that (S,.) is ∏ - inverse semigroup. We will also consider (S,.) is commutative weakly balanced semigroup  and then prove every left (right) regular semigroup is weakly separate, quasi separate and separate. Additionally, if (S,.) is completely regular semigroup we will prove that (S,.) is permutable and weakly separtive. One a conclusing note we will show and prove some theorems related to permutable semigroups and GC commutative Semigroups.


2000 ◽  
Vol 65 (4) ◽  
pp. 1705-1712 ◽  
Author(s):  
Markus Junker

Several attempts have been done to distinguish “positive” information in an arbitrary first order theory, i.e., to find a well behaved class of closed sets among the definable sets. In many cases, a definable set is said to be closed if its conjugates are sufficiently distinct from each other. Each such definition yields a class of theories, namely those where all definable sets are constructible, i.e., boolean combinations of closed sets. Here are some examples, ordered by strength:Weak normality describes a rather small class of theories which are well understood by now (see, for example, [P]). On the other hand, normalization is so weak that all theories, in a suitable context, are normalizable (see [HH]). Thus equational theories form an interesting intermediate class of theories. Little work has been done so far. The original work of Srour [S1, S2, S3] adopts a point of view that is closer to universal algebra than to stability theory. The fundamental definitions and model theoretic properties can be found in [PS], though some easy observations are missing there. Hrushovski's example of a stable non-equational theory, the first and only one so far, is described in the unfortunately unpublished manuscript [HS]. In fact, it is an expansion of the free pseudospace constructed independently by Baudisch and Pillay in [BP] as an example of a strictly 2-ample theory. Strong equationality, defined in [Hr], is also investigated in [HS].


2001 ◽  
Vol 8 (21) ◽  
Author(s):  
Luca Aceto ◽  
Zoltán Ésik ◽  
Anna Ingólfsdóttir

This paper studies the equational theory of various exotic semirings presented in the literature. Exotic semirings are semirings whose underlying carrier set is some subset of the set of real numbers equipped with binary operations of minimum or maximum as sum, and addition as product. Two prime examples of such structures are the <em> (max,+) semiring</em> and the <em>tropical semiring</em>. It is shown that none of the exotic semirings commonly considered in the literature has a finite basis for its equations, and that similar results hold for the commutative idempotent weak semirings that underlie them. For each of these commutative idempotent weak semirings, the paper offers characterizations of the equations that hold in them, decidability results for their equational theories, explicit descriptions of the free algebras in the varieties they generate, and relative axiomatization results.


Sign in / Sign up

Export Citation Format

Share Document