Some dynamic properties of a prestressed incompressible hyperelastic material

1973 ◽  
Vol 8 (1) ◽  
pp. 61-73 ◽  
Author(s):  
J.A. Belward

The work continues some earlier investigations into dynamic properties of prestressed incompressible elastic materials. Whereas the material was previously assumed to be a Mooney material, it is here allowed to have any strain energy function. Plane wave propagation and the motions caused by an impulsive line of traction are examined. The results obtained are compared with the earlier work.

Author(s):  
David J. Steigmann

This chapter covers the notion of hyperelasticity—the concept that stress is derived from a strain—energy function–by invoking an analogy between elastic materials and springs. Alternatively, it can be derived by invoking a work inequality; the notion that work is required to effect a cyclic motion of the material.


2005 ◽  
Vol 72 (6) ◽  
pp. 843-851 ◽  
Author(s):  
H. Kobayashi ◽  
R. Vanderby

Acoustoelastic analysis has usually been applied to compressible engineering materials. Many materials (e.g., rubber and biologic materials) are “nearly” incompressible and often assumed incompressible in their constitutive equations. These material models do not admit dilatational waves for acoustoelastic analysis. Other constitutive models (for these materials) admit compressibility but still do not model dilatational waves with fidelity (shown herein). In this article a new strain energy function is formulated to model dilatational wave propagation in nearly incompressible, isotropic materials. This strain energy function requires four material constants and is a function of Cauchy–Green deformation tensor invariants. This function and existing (compressible) strain energy functions are compared based upon their ability to predict dilatational wave propagation in uniaxially prestressed rubber. Results demonstrate deficiencies in existing functions and the usefulness of our new function for acoustoelastic applications. Our results also indicate that acoustoelastic analysis has great potential for the accurate prediction of active or residual stresses in nearly incompressible materials.


Author(s):  
Afshin Anssari-Benam ◽  
Andrea Bucchi ◽  
Giuseppe Saccomandi

AbstractThe application of a newly proposed generalised neo-Hookean strain energy function to the inflation of incompressible rubber-like spherical and cylindrical shells is demonstrated in this paper. The pressure ($P$ P ) – inflation ($\lambda $ λ or $v$ v ) relationships are derived and presented for four shells: thin- and thick-walled spherical balloons, and thin- and thick-walled cylindrical tubes. Characteristics of the inflation curves predicted by the model for the four considered shells are analysed and the critical values of the model parameters for exhibiting the limit-point instability are established. The application of the model to extant experimental datasets procured from studies across 19th to 21st century will be demonstrated, showing favourable agreement between the model and the experimental data. The capability of the model to capture the two characteristic instability phenomena in the inflation of rubber-like materials, namely the limit-point and inflation-jump instabilities, will be made evident from both the theoretical analysis and curve-fitting approaches presented in this study. A comparison with the predictions of the Gent model for the considered data is also demonstrated and is shown that our presented model provides improved fits. Given the simplicity of the model, its ability to fit a wide range of experimental data and capture both limit-point and inflation-jump instabilities, we propose the application of our model to the inflation of rubber-like materials.


2021 ◽  
pp. 002199832110115
Author(s):  
Shaikbepari Mohmmed Khajamoinuddin ◽  
Aritra Chatterjee ◽  
MR Bhat ◽  
Dineshkumar Harursampath ◽  
Namrata Gundiah

We characterize the material properties of a woven, multi-layered, hyperelastic composite that is useful as an envelope material for high-altitude stratospheric airships and in the design of other large structures. The composite was fabricated by sandwiching a polyaramid Nomex® core, with good tensile strength, between polyimide Kapton® films with high dielectric constant, and cured with epoxy using a vacuum bagging technique. Uniaxial mechanical tests were used to stretch the individual materials and the composite to failure in the longitudinal and transverse directions respectively. The experimental data for Kapton® were fit to a five-parameter Yeoh form of nonlinear, hyperelastic and isotropic constitutive model. Image analysis of the Nomex® sheets, obtained using scanning electron microscopy, demonstrate two families of symmetrically oriented fibers at 69.3°± 7.4° and 129°± 5.3°. Stress-strain results for Nomex® were fit to a nonlinear and orthotropic Holzapfel-Gasser-Ogden (HGO) hyperelastic model with two fiber families. We used a linear decomposition of the strain energy function for the composite, based on the individual strain energy functions for Kapton® and Nomex®, obtained using experimental results. A rule of mixtures approach, using volume fractions of individual constituents present in the composite during specimen fabrication, was used to formulate the strain energy function for the composite. Model results for the composite were in good agreement with experimental stress-strain data. Constitutive properties for woven composite materials, combining nonlinear elastic properties within a composite materials framework, are required in the design of laminated pretensioned structures for civil engineering and in aerospace applications.


Sign in / Sign up

Export Citation Format

Share Document