scholarly journals SOME OBSERVATIONS ON THE DIOPHANTINE EQUATION y2=x!+A AND RELATED RESULTS

2012 ◽  
Vol 86 (3) ◽  
pp. 377-388 ◽  
Author(s):  
MACIEJ ULAS

AbstractWe consider the Brocard–Ramanujan type Diophantine equation y2=x!+A and ask about values of A∈ℤ for which there are at least three solutions in the positive integers. In particular, we prove that the set 𝒜 consisting of integers with this property is infinite. In fact we construct a two-parameter family of integers contained in 𝒜. We also give some computational results related to this equation.

Mathematics ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 279
Author(s):  
Erhan Güler ◽  
Ömer Kişi ◽  
Christos Konaxis

Considering the Weierstrass data as ( ψ , f , g ) = ( 2 , 1 - z - m , z n ) , we introduce a two-parameter family of Henneberg-type minimal surface that we call H m , n for positive integers ( m , n ) by using the Weierstrass representation in the four-dimensional Euclidean space E 4 . We define H m , n in ( r , θ ) coordinates for positive integers ( m , n ) with m ≠ 1 , n ≠ - 1 , - m + n ≠ - 1 , and also in ( u , v ) coordinates, and then we obtain implicit algebraic equations of the Henneberg-type minimal surface of values ( 4 , 2 ) .


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1813
Author(s):  
S. Subburam ◽  
Lewis Nkenyereye ◽  
N. Anbazhagan ◽  
S. Amutha ◽  
M. Kameswari ◽  
...  

Consider the Diophantine equation yn=x+x(x+1)+⋯+x(x+1)⋯(x+k), where x, y, n, and k are integers. In 2016, a research article, entitled – ’power values of sums of products of consecutive integers’, primarily proved the inequality n= 19,736 to obtain all solutions (x,y,n) of the equation for the fixed positive integers k≤10. In this paper, we improve the bound as n≤ 10,000 for the same case k≤10, and for any fixed general positive integer k, we give an upper bound depending only on k for n.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Nikolay Bobev ◽  
Friðrik Freyr Gautason ◽  
Jesse van Muiden

Abstract We employ a non-compact gauging of four-dimensional maximal supergravity to construct a two-parameter family of AdS4 J-fold solutions preserving $$ \mathcal{N} $$ N = 2 supersymmetry. All solutions preserve $$ \mathfrak{u} $$ u (1) × $$ \mathfrak{u} $$ u (1) global symmetry and in special limits we recover the previously known $$ \mathfrak{su} $$ su (2) × $$ \mathfrak{u} $$ u (1) invariant $$ \mathcal{N} $$ N = 2 and $$ \mathfrak{su} $$ su (2) × $$ \mathfrak{su} $$ su (2) invariant $$ \mathcal{N} $$ N = 4 J-fold solutions. This family of AdS4 backgrounds can be uplifted to type IIB string theory and is holographically dual to the conformal manifold of a class of three-dimensional S-fold SCFTs obtained from the $$ \mathcal{N} $$ N = 4 T [U(N)] theory of Gaiotto-Witten. We find the spectrum of supergravity excitations of the AdS4 solutions and use it to study how the operator spectrum of the three-dimensional SCFT depends on the exactly marginal couplings.


1986 ◽  
Vol 10 (5) ◽  
pp. 415-423 ◽  
Author(s):  
J.R. Pounder ◽  
Thomas D. Rogers

10.37236/933 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Gregg Musiker ◽  
James Propp

Fomin and Zelevinsky show that a certain two-parameter family of rational recurrence relations, here called the $(b,c)$ family, possesses the Laurentness property: for all $b,c$, each term of the $(b,c)$ sequence can be expressed as a Laurent polynomial in the two initial terms. In the case where the positive integers $b,c$ satisfy $bc < 4$, the recurrence is related to the root systems of finite-dimensional rank $2$ Lie algebras; when $bc>4$, the recurrence is related to Kac-Moody rank $2$ Lie algebras of general type. Here we investigate the borderline cases $bc=4$, corresponding to Kac-Moody Lie algebras of affine type. In these cases, we show that the Laurent polynomials arising from the recurence can be viewed as generating functions that enumerate the perfect matchings of certain graphs. By providing combinatorial interpretations of the individual coefficients of these Laurent polynomials, we establish their positivity.


Sign in / Sign up

Export Citation Format

Share Document