operator spectrum
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 17)

H-INDEX

16
(FIVE YEARS 1)

2022 ◽  
Vol 355 ◽  
pp. 02001
Author(s):  
Lan Luo ◽  
Jingsong Leng ◽  
Tingting Xie

The concept of g-frame is a natural extension of the frame. This article mainly discusses the relationship between some special bounded linear operators and g-frames, and characterizes the properties of g-frames. In addition, according to the operator spectrum theory, the eigenvalues are introduced into the g-frame theory, and a new expression of the best frame boundary of the g-frame is given.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Simon Ekhammar ◽  
Bengt E. W. Nilsson

Abstract We derive major parts of the eigenvalue spectrum of the operators on the squashed seven-sphere that appear in the compactification of eleven-dimensional supergravity. These spectra determine the mass spectrum of the fields in AdS4 and are important for the corresponding $$ \mathcal{N} $$ N = 1 supermultiplet structure. This work is a continuation of the work in [1] where the complete spectrum of irreducible isometry representations of the fields in AdS4 was derived for this compactification. Some comments are also made concerning the G2 holonomy and its implications on the structure of the operator equations on the squashed seven-sphere.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Mattia Cesàro ◽  
Gabriel Larios ◽  
Oscar Varela

Abstract A holographic duality was recently established between an $$ \mathcal{N} $$ N = 4 non-geometric AdS4 solution of type IIB supergravity in the so-called S-fold class, and a three- dimensional conformal field theory (CFT) defined as a limit of $$ \mathcal{N} $$ N = 4 super-Yang-Mills at an interface. Using gauged supergravity, the $$ \mathcal{N} $$ N = 2 conformal manifold (CM) of this CFT has been assessed to be two-dimensional. Here, we holographically characterise the large-N operator spectrum of the marginally-deformed CFT. We do this by, firstly, providing the algebraic structure of the complete Kaluza-Klein (KK) spectrum on the associated two-parameter family of AdS4 solutions. And, secondly, by computing the $$ \mathcal{N} $$ N = 2 super-multiplet dimensions at the first few KK levels on a lattice in the CM, using new exceptional field theory techniques. Our KK analysis also allows us to establish that, at least at large N, this $$ \mathcal{N} $$ N = 2 CM is topologically a non-compact cylindrical Riemann surface bounded on only one side.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Nathan Benjamin ◽  
Scott Collier ◽  
A. Liam Fitzpatrick ◽  
Alexander Maloney ◽  
Eric Perlmutter

Abstract We apply the theory of harmonic analysis on the fundamental domain of SL(2, ℤ) to partition functions of two-dimensional conformal field theories. We decompose the partition function of c free bosons on a Narain lattice into eigenfunctions of the Laplacian of worldsheet moduli space ℍ/SL(2, ℤ), and of target space moduli space O(c, c; ℤ)\O(c, c; ℝ)/O(c)×O(c). This decomposition manifests certain properties of Narain theories and ensemble averages thereof. We extend the application of spectral theory to partition functions of general two-dimensional conformal field theories, and explore its meaning in connection to AdS3 gravity. An implication of harmonic analysis is that the local operator spectrum is fully determined by a certain subset of degeneracies.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Nikolay Bobev ◽  
Friðrik Freyr Gautason ◽  
Jesse van Muiden

Abstract We employ a non-compact gauging of four-dimensional maximal supergravity to construct a two-parameter family of AdS4 J-fold solutions preserving $$ \mathcal{N} $$ N = 2 supersymmetry. All solutions preserve $$ \mathfrak{u} $$ u (1) × $$ \mathfrak{u} $$ u (1) global symmetry and in special limits we recover the previously known $$ \mathfrak{su} $$ su (2) × $$ \mathfrak{u} $$ u (1) invariant $$ \mathcal{N} $$ N = 2 and $$ \mathfrak{su} $$ su (2) × $$ \mathfrak{su} $$ su (2) invariant $$ \mathcal{N} $$ N = 4 J-fold solutions. This family of AdS4 backgrounds can be uplifted to type IIB string theory and is holographically dual to the conformal manifold of a class of three-dimensional S-fold SCFTs obtained from the $$ \mathcal{N} $$ N = 4 T [U(N)] theory of Gaiotto-Witten. We find the spectrum of supergravity excitations of the AdS4 solutions and use it to study how the operator spectrum of the three-dimensional SCFT depends on the exactly marginal couplings.


2021 ◽  
Author(s):  
Antonio Carlos Costa ◽  
Tosif Ahamed ◽  
David Jordan ◽  
Greg J Stephens

We leverage the interplay between microscopic variability and macroscopic order to connect physical descriptions across scales directly from data, without underlying equations. We reconstruct a state space by concatenating measurements in time, building a maximum entropy partition of the resulting sequences, and choosing the sequence length to maximize predictive information. Trading non-linear trajectories for linear, ensemble evolution, we analyze reconstructed dynamics through transfer operators. The evolution is parameterized by a transition time τ: capturing the source entropy rate at small τ and revealing timescale separation with collective, coherent states through the operator spectrum at larger τ. Applicable to both deterministic and stochastic systems, we illustrate our approach through the Langevin dynamics of a particle in a double-well potential and the Lorenz system. Applied to the behavior of the nematode worm C. elegans, we derive a "run-and-pirouette" navigation strategy directly from posture dynamics. We demonstrate how sequences simulated from the ensemble evolution recover effective diffusion in the worm's centroid trajectories and introduce a top-down, operator-based clustering which reveals subtle subdivisions of the "run" behavior.


Author(s):  
Hend Alhosani ◽  
Muhammad Habib ur Rehman ◽  
Khaled Salah ◽  
Claudio Lima ◽  
Davor Svetinovic

Axioms ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 138
Author(s):  
Tatiana Ratnikova

The aim of the research is to develop the regularization method. By Lomov’s regularization method, we constructed a uniform asymptotic solution of the singularly perturbed Cauchy problem for a parabolic equation in the case of violation of stability conditions of the limit-operator spectrum. The problem with a “simple” turning point is considered in the case, when the eigenvalue vanishes at t=0 and has the form tm/na(t). The asymptotic convergence of the regularized series is proved.


2020 ◽  
Vol 12 (1) ◽  
pp. 83-102
Author(s):  
Tahar Bouguetaia ◽  
Bekkai Messirdi

The main goal of this paper is to study the spectrum and resonances of several classes of Schrödinger operators. Two important examples occurring in mathematical physics are discussed: harmonic oscillator and Hamiltonian of hydrogen atom. Keywords: Schrödinger operator, Spectrum, Periodic potential, Resonances.


Sign in / Sign up

Export Citation Format

Share Document