scholarly journals THE CATEGORIFICATION OF THE KAUFFMAN BRACKET SKEIN MODULE OF

2013 ◽  
Vol 88 (3) ◽  
pp. 407-422
Author(s):  
BOŠTJAN GABROVŠEK

AbstractKhovanov homology, an invariant of links in ${ \mathbb{R} }^{3} $, is a graded homology theory that categorifies the Jones polynomial in the sense that the graded Euler characteristic of the homology is the Jones polynomial. Asaeda et al. [‘Categorification of the Kauffman bracket skein module of $I$-bundles over surfaces’, Algebr. Geom. Topol. 4 (2004), 1177–1210] generalised this construction by defining a double graded homology theory that categorifies the Kauffman bracket skein module of links in $I$-bundles over surfaces, except for the surface $ \mathbb{R} {\mathrm{P} }^{2} $, where the construction fails due to strange behaviour of links when projected to the nonorientable surface $ \mathbb{R} {\mathrm{P} }^{2} $. This paper categorifies the missing case of the twisted $I$-bundle over $ \mathbb{R} {\mathrm{P} }^{2} $, $ \mathbb{R} {\mathrm{P} }^{2} \widetilde {\times } I\approx \mathbb{R} {\mathrm{P} }^{3} \setminus \{ \ast \} $, by redefining the differential in the Khovanov chain complex in a suitable manner.

2014 ◽  
Vol 23 (14) ◽  
pp. 1450076 ◽  
Author(s):  
Mustafa Hajij

We study a certain skein element in the relative Kauffman bracket skein module of the disk with some marked points, and expand this element in terms of linearly independent elements of this module. This expansion is used to compute and study the head and the tail of the colored Jones polynomial and in particular we give a simple q-series for the tail of the knot 85. Furthermore, we use this expansion to obtain an easy determination of the theta coefficients.


Symmetry ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 720
Author(s):  
Young Kwun ◽  
Abdul Nizami ◽  
Mobeen Munir ◽  
Zaffar Iqbal ◽  
Dishya Arshad ◽  
...  

Khovanov homology is a categorication of the Jones polynomial. It consists of graded chain complexes which, up to chain homotopy, are link invariants, and whose graded Euler characteristic is equal to the Jones polynomial of the link. In this article we give some Khovanov homology groups of 3-strand braid links Δ 2 k + 1 = x 1 2 k + 2 x 2 x 1 2 x 2 2 x 1 2 ⋯ x 2 2 x 1 2 x 1 2 , Δ 2 k + 1 x 2 , and Δ 2 k + 1 x 1 , where Δ is the Garside element x 1 x 2 x 1 , and which are three out of all six classes of the general braid x 1 x 2 x 1 x 2 ⋯ with n factors.


1995 ◽  
Vol 220 (1) ◽  
pp. 65-73 ◽  
Author(s):  
Jim Hoste ◽  
Józef H. Przytycki

2008 ◽  
Vol 17 (01) ◽  
pp. 31-45 ◽  
Author(s):  
MARKO STOŠIĆ

For each graph and each positive integer n, we define a chain complex whose graded Euler characteristic is equal to an appropriate n-specialization of the dichromatic polynomial. This also gives a categorification of n-specializations of the Tutte polynomial of graphs. Also, for each graph and integer n ≤ 2, we define the different one-variable n-specializations of the dichromatic polynomial, and for each polynomial, we define graded chain complex whose graded Euler characteristic is equal to that polynomial. Furthermore, we explicitly categorify the specialization of the Tutte polynomial for graphs which corresponds to the Jones polynomial of the appropriate alternating link.


2012 ◽  
Vol 23 (01) ◽  
pp. 1250015 ◽  
Author(s):  
KHALED QAZAQZEH

We prove that the character variety of a family of one-relator groups has only one defining polynomial and we provide the means to compute it. Consequently, we give a basis for the Kauffman bracket skein module of the exterior of the rational link Lp/q of two components modulo the (A + 1)-torsion.


2009 ◽  
Vol 18 (12) ◽  
pp. 1651-1662
Author(s):  
ROBERT G. TODD

In A Volumish Theorem for the Jones Polynomial, by O. Dasbach and X. S. Lin, it was shown that the sum of the absolute value of the second and penultimate coefficient of the Jones polynomial of an alternating knot is equal to the twist number of the knot. Here we give a new proof of this result using Khovanov homology. The proof is by induction on the number of crossings using the long exact sequence in Khovanov homology corresponding to the Kauffman bracket skein relation.


2003 ◽  
Vol 78 (1) ◽  
pp. 1-17 ◽  
Author(s):  
D Bullock ◽  
Joanna Kania-Bartoszynska ◽  
Charles Frohman

Sign in / Sign up

Export Citation Format

Share Document