scholarly journals CATEGORIFICATION OF THE DICHROMATIC POLYNOMIAL FOR GRAPHS

2008 ◽  
Vol 17 (01) ◽  
pp. 31-45 ◽  
Author(s):  
MARKO STOŠIĆ

For each graph and each positive integer n, we define a chain complex whose graded Euler characteristic is equal to an appropriate n-specialization of the dichromatic polynomial. This also gives a categorification of n-specializations of the Tutte polynomial of graphs. Also, for each graph and integer n ≤ 2, we define the different one-variable n-specializations of the dichromatic polynomial, and for each polynomial, we define graded chain complex whose graded Euler characteristic is equal to that polynomial. Furthermore, we explicitly categorify the specialization of the Tutte polynomial for graphs which corresponds to the Jones polynomial of the appropriate alternating link.

Author(s):  
F. Jaeger ◽  
D. L. Vertigan ◽  
D. J. A. Welsh

AbstractWe show that determining the Jones polynomial of an alternating link is #P-hard. This is a special case of a wide range of results on the general intractability of the evaluation of the Tutte polynomial T(M; x, y) of a matroid M except for a few listed special points and curves of the (x, y)-plane. In particular the problem of evaluating the Tutte polynomial of a graph at a point in the (x, y)-plane is #P-hard except when (x − 1)(y − 1) = 1 or when (x, y) equals (1, 1), (−1, −1), (0, −1), (−1, 0), (i, −i), (−i, i), (j, j2), (j2, j) where j = e2πi/3


2012 ◽  
Vol 21 (06) ◽  
pp. 1250062 ◽  
Author(s):  
MOSHE COHEN

This paper presents an algorithm to construct a weighted adjacency matrix of a plane bipartite graph obtained from a pretzel knot diagram. The determinant of this matrix after evaluation is shown to be the Jones polynomial of the pretzel knot by way of perfect matchings (or dimers) of this graph. The weights are Tutte's activity letters that arise because the Jones polynomial is a specialization of the signed version of the Tutte polynomial. The relationship is formalized between the familiar spanning tree setting for the Tait graph and the perfect matchings of the plane bipartite graph above. Evaluations of these activity words are related to the chain complex for the Champanerkar–Kofman spanning tree model of reduced Khovanov homology.


10.37236/4627 ◽  
2015 ◽  
Vol 22 (3) ◽  
Author(s):  
Fengming Dong ◽  
Xian'an Jin

In this paper, we introduce the Jones polynomial of a graph $G=(V,E)$ with $k$  components as the following specialization of the Tutte polynomial:$$J_G(t)=(-1)^{|V|-k}t^{|E|-|V|+k}T_G(-t,-t^{-1}).$$We first study its basic properties and determine certain extreme coefficients. Then we prove that $(-\infty, 0]$ is a zero-free interval of Jones polynomials of connected bridgeless graphs while for any small $\epsilon>0$ or large $M>0$, there is a zero of the Jones polynomial of a plane graph in $(0,\epsilon)$, $(1-\epsilon,1)$, $(1,1+\epsilon)$ or $(M,+\infty)$. Let $r(G)$ be the maximum moduli of zeros of $J_G(t)$. By applying Sokal's result on zeros of Potts model partition functions and Lucas's theorem, we prove that\begin{eqnarray*}{q_s-|V|+1\over |E|}\leq r(G)<1+6.907652\Delta_G\end{eqnarray*}for any connected bridgeless and loopless graph $G=(V,E)$ of maximum degree $\Delta_G$ with $q_s$ parallel classes. As a consequence of the upper bound, X.-S. Lin's conjecture holds if the positive checkerboard graph of a connected alternating link has a fixed maximum degree and a sufficiently large number of edges.


2013 ◽  
Vol 88 (3) ◽  
pp. 407-422
Author(s):  
BOŠTJAN GABROVŠEK

AbstractKhovanov homology, an invariant of links in ${ \mathbb{R} }^{3} $, is a graded homology theory that categorifies the Jones polynomial in the sense that the graded Euler characteristic of the homology is the Jones polynomial. Asaeda et al. [‘Categorification of the Kauffman bracket skein module of $I$-bundles over surfaces’, Algebr. Geom. Topol. 4 (2004), 1177–1210] generalised this construction by defining a double graded homology theory that categorifies the Kauffman bracket skein module of links in $I$-bundles over surfaces, except for the surface $ \mathbb{R} {\mathrm{P} }^{2} $, where the construction fails due to strange behaviour of links when projected to the nonorientable surface $ \mathbb{R} {\mathrm{P} }^{2} $. This paper categorifies the missing case of the twisted $I$-bundle over $ \mathbb{R} {\mathrm{P} }^{2} $, $ \mathbb{R} {\mathrm{P} }^{2} \widetilde {\times } I\approx \mathbb{R} {\mathrm{P} }^{3} \setminus \{ \ast \} $, by redefining the differential in the Khovanov chain complex in a suitable manner.


2008 ◽  
Vol 8 (1&2) ◽  
pp. 147-180
Author(s):  
P. Wocjan ◽  
J. Yard

We analyze relationships between quantum computation and a family of generalizations of the Jones polynomial. Extending recent work by Aharonov et al., we give efficient quantum circuits for implementing the unitary Jones-Wenzl representations of the braid group. We use these to provide new quantum algorithms for approximately evaluating a family of specializations of the HOMFLYPT two-variable polynomial of trace closures of braids. We also give algorithms for approximating the Jones polynomial of a general class of closures of braids at roots of unity. Next we provide a self-contained proof of a result of Freedman et al.\ that any quantum computation can be replaced by an additive approximation of the Jones polynomial, evaluated at almost any primitive root of unity. Our proof encodes two-qubit unitaries into the rectangular representation of the eight-strand braid group. We then give QCMA-complete and PSPACE-complete problems which are based on braids. We conclude with direct proofs that evaluating the Jones polynomial of the plat closure at most primitive roots of unity is a \#P-hard problem, while learning its most significant bit is PP-hard, circumventing the usual route through the Tutte polynomial and graph coloring.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Abdulgani Şahin

AbstractIn this study, we introduce the relationship between the Tutte polynomials and dichromatic polynomials of (2,n)-torus knots. For this aim, firstly we obtain the signed graph of a (2,n)-torus knot, marked with {+} signs, via the regular diagram of its. Whereupon, we compute the Tutte polynomial for this graph and find a generalization through these calculations. Finally we obtain dichromatic polynomial lying under the unmarked states of the signed graph of the (2,n)-torus knots by the generalization.


Symmetry ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 720
Author(s):  
Young Kwun ◽  
Abdul Nizami ◽  
Mobeen Munir ◽  
Zaffar Iqbal ◽  
Dishya Arshad ◽  
...  

Khovanov homology is a categorication of the Jones polynomial. It consists of graded chain complexes which, up to chain homotopy, are link invariants, and whose graded Euler characteristic is equal to the Jones polynomial of the link. In this article we give some Khovanov homology groups of 3-strand braid links Δ 2 k + 1 = x 1 2 k + 2 x 2 x 1 2 x 2 2 x 1 2 ⋯ x 2 2 x 1 2 x 1 2 , Δ 2 k + 1 x 2 , and Δ 2 k + 1 x 1 , where Δ is the Garside element x 1 x 2 x 1 , and which are three out of all six classes of the general braid x 1 x 2 x 1 x 2 ⋯ with n factors.


2020 ◽  
pp. 1-33
Author(s):  
ALBERTO CAVALLO

Abstract We introduce a generalization of the Lisca–Ozsváth–Stipsicz–Szabó Legendrian invariant ${\mathfrak L}$ to links in every rational homology sphere, using the collapsed version of link Floer homology. We represent a Legendrian link L in a contact 3-manifold ${(M,\xi)}$ with a diagram D, given by an open book decomposition of ${(M,\xi)}$ adapted to L, and we construct a chain complex ${cCFL^-(D)}$ with a special cycle in it denoted by ${\mathfrak L(D)}$ . Then, given two diagrams ${D_1}$ and ${D_2}$ which represent Legendrian isotopic links, we prove that there is a map between the corresponding chain complexes that induces an isomorphism in homology and sends ${\mathfrak L(D_1)}$ into ${\mathfrak L(D_2)}$ . Moreover, a connected sum formula is also proved and we use it to give some applications about non-loose Legendrian links; that are links such that the restriction of ${\xi}$ on their complement is tight.


2013 ◽  
Vol 29 (0) ◽  
pp. 21-22 ◽  
Author(s):  
Masahiro MIKURIYA ◽  
Kazuya OUCHI ◽  
Yasutaka NAKANISHI ◽  
Daisuke YOSHIOKA ◽  
Hidekazu TANAKA ◽  
...  

2010 ◽  
Vol 20 (2) ◽  
pp. 267-287 ◽  
Author(s):  
VYACHESLAV KRUSHKAL

We introduce a polynomial invariant of graphs on surfaces,PG, generalizing the classical Tutte polynomial. Topological duality on surfaces gives rise to a natural duality result forPG, analogous to the duality for the Tutte polynomial of planar graphs. This property is important from the perspective of statistical mechanics, where the Tutte polynomial is known as the partition function of the Potts model. For ribbon graphs,PGspecializes to the well-known Bollobás–Riordan polynomial, and in fact the two polynomials carry equivalent information in this context. Duality is also established for a multivariate version of the polynomialPG. We then consider a 2-variable version of the Jones polynomial for links in thickened surfaces, taking into account homological information on the surface. An analogue of Thistlethwaite's theorem is established for these generalized Jones and Tutte polynomials for virtual links.


Sign in / Sign up

Export Citation Format

Share Document