Readjustment of the malaria vector control strategy in the Rusizi Valley, Burundi

1995 ◽  
Vol 85 (4) ◽  
pp. 541-548 ◽  
Author(s):  
A. Smits ◽  
M. Coosemans ◽  
W. Van Bortel ◽  
M. Barutwanayo ◽  
Ch. Delacollette

AbstractBased on a longitudinal survey performed in 1982–1983, a vector control strategy was implemented from 1985 onwards in a malarial-dense area of Burundi. One annual round of indoor spraying with malathion greatly reduced both the parasite load and the parasite rate in the population until 1989. However, from 1990 to 1993, a progressive resurgence of malaria was observed in most villages. For the present study, two villages were selected on the basis of their differential response to house spraying. In the village of Mulira surrounded by rice fields, the excellent results observed in the past have been followed by recent increases in parasite rates. In the village of Murengeza, also located in the rice growing area but near a river, the spraying had less impact. The inoculation rate was found to be similar in both villages, but the transmission peak occurred at the end of April in Mulira, and two months earlier in Murengeza. Indoor spraying with lambdacyhalothrin was carried out on 26 April 1993, one month too late according to the strategy intended. As no sporozoite mosquitoes were observed during the six months following spraying, this strategy should be maintained but, in villages near rivers, the application should commence much earlier, in mid-January. Anopheles gambiae Giles sensu stricto (Diptera: Culicidae) and A. funestus Giles were found to be very endophilic species, whereas the dominant A. arabiensis. Patton was highly exophilic. Therefore it is recommended that treatments should not only be applied to human dwellings but also to other structures such as animal sheds, kitchens, etc, shown by earlier studies to be resting sites of A. arabiensis. This study underlines the need for regular reassessment in vector control programmes.

1990 ◽  
Vol 6 (2) ◽  
pp. 31-36 ◽  
Author(s):  
J. Crampton ◽  
A. Morris ◽  
G. Lycett ◽  
A. Warren ◽  
P. Eggleston

Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1102 ◽  
Author(s):  
Hamidreza Heidari ◽  
Anton Rassõlkin ◽  
Toomas Vaimann ◽  
Ants Kallaste ◽  
Asghar Taheri ◽  
...  

In this paper, a new vector control strategy is proposed to reduce torque ripples and harmonic currents represented in switching table-based direct torque control (ST-DTC) of a six-phase induction motor (6PIM). For this purpose, a new set of inputs is provided for the switching table (ST). These inputs are based on the decoupled current components in the synchronous reference frame. Indeed, using both field-oriented control (FOC) and direct torque control (DTC) concepts, precise inputs are applied to the ST in order to achieve better steady-state torque response. By applying the duty cycle control strategy, the loss subspace components are eliminated through a suitable selection of virtual voltage vectors. Each virtual voltage vector is based on a combination of a large and a medium vector to make the average volt-seconds in loss subspace near to zero. Therefore, the proposed strategy not only notably reduces the torque ripples, but also suppresses the low frequency current harmonics, simultaneously. Simulation and experimental results clarify the high performance of the proposed scheme.


Sign in / Sign up

Export Citation Format

Share Document