scholarly journals The Borel structure of iterates of continuous functions

1989 ◽  
Vol 32 (3) ◽  
pp. 483-494 ◽  
Author(s):  
Paul D. Humke ◽  
M. Laczkovich

Let C[0,1] be the Banach space of continuous functions defined on [0,1] and let C be the set of functions f∈C[0,1] mapping [0,1] into itself. If f∈C, fk will denote the kth iterate of f and we put Ck = {fk:f∈C;}. The set of increasing (≡ nondecreasing) and decreasing (≡ nonincreasing) functions in C will be denoted by ℐ and D, respectively. If a function f is defined on an interval I, we let C(f) denote the set of points at which f is locally constant, i.e.We let N denote the set of positive integers and NN denote the Baire space of sequences of positive integers.

1985 ◽  
Vol 101 (3-4) ◽  
pp. 253-271 ◽  
Author(s):  
O. A. Arino ◽  
T. A. Burton ◽  
J. R. Haddock

SynopsisWe consider a system of functional differential equationswhere G: R × B → Rn is T periodic in t and B is a certain phase space of continuous functions that map (−∞, 0[ into Rn. The concepts of B-uniform boundedness and B-uniform ultimate boundedness are introduced, and sufficient conditions are given for the existence of a T-periodic solution to (1.1). Several examples are given to illustrate the main theorem.


1971 ◽  
Vol 23 (3) ◽  
pp. 468-480 ◽  
Author(s):  
N. A. Friedman ◽  
A. E. Tong

Representation theorems for additive functional have been obtained in [2, 4; 6-8; 10-13]. Our aim in this paper is to study the representation of additive operators.Let S be a compact Hausdorff space and let C(S) be the space of real-valued continuous functions defined on S. Let X be an arbitrary Banach space and let T be an additive operator (see § 2) mapping C(S) into X. We will show (see Lemma 3.4) that additive operators may be represented in terms of a family of “measures” {μh} which take their values in X**. If X is weakly sequentially complete, then {μh} can be shown to take their values in X and are vector-valued measures (i.e., countably additive in the norm) (see Lemma 3.7). And, if X* is separable in the weak-* topology, T may be represented in terms of a kernel representation satisfying the Carathéordory conditions (see [9; 11; §4]):


Author(s):  
Andrea Cosso ◽  
Francesco Russo

Functional Itô calculus was introduced in order to expand a functional [Formula: see text] depending on time [Formula: see text], past and present values of the process [Formula: see text]. Another possibility to expand [Formula: see text] consists in considering the path [Formula: see text] as an element of the Banach space of continuous functions on [Formula: see text] and to use Banach space stochastic calculus. The aim of this paper is threefold. (1) To reformulate functional Itô calculus, separating time and past, making use of the regularization procedures which match more naturally the notion of horizontal derivative which is one of the tools of that calculus. (2) To exploit this reformulation in order to discuss the (not obvious) relation between the functional and the Banach space approaches. (3) To study existence and uniqueness of smooth solutions to path-dependent partial differential equations which naturally arise in the study of functional Itô calculus. More precisely, we study a path-dependent equation of Kolmogorov type which is related to the window process of the solution to an Itô stochastic differential equation with path-dependent coefficients. We also study a semilinear version of that equation.


Author(s):  
Fernando Bombal ◽  
Pilar Cembranos

Let K be a compact Hausdorff space and E, F Banach spaces. We denote by C(K, E) the Banach space of all continuous. E-valued functions defined on K, with the supremum norm. It is well known ([6], [7]) that every operator (= bounded linear operator) T from C(K, E) to F has a finitely additive representing measure m of bounded semi-variation, defined on the Borel σ-field Σ of K and with values in L(E, F″) (the space of all operators from E into the second dual of F), in such a way thatwhere the integral is considered in Dinculeanu's sense.


1989 ◽  
Vol 31 (2) ◽  
pp. 131-135 ◽  
Author(s):  
Hans Jarchow

Let K be a compact Hausdorff space, and let C(K) be the corresponding Banach space of continuous functions on K. It is well-known that every 1-summing operator S:C(K)→l2 is also nuclear, and therefore factors S = S1S2, with S1:l2→l2 a Hilbert–Schmidt operator and S1:C(K)→l2 a bounded operator. It is easily seen that this latter property is preserved when C(K) is replaced by any quotient, and that a Banach space X enjoys this property if and only if its second dual, X**, does. This led A. Pełczyński [15] to ask if the second dual of a Banach space X must be isomorphic to a quotient of a C(K)-space if X has the property that every 1-summing operator X-→l2 factors through a Hilbert-Schmidt operator. In this paper, we shall first of all reformulate the question in an appropriate manner and then show that counter-examples are available among super-reflexive Tsirelson-like spaces as well as among quasi-reflexive Banach spaces.


1993 ◽  
Vol 24 (2) ◽  
pp. 135-147
Author(s):  
A. AL-ZAMEL ◽  
R. KHALIL

Let $X$ be a Banach space with the approximation property, and $C(I,X)$ the space of continuous functions defined on $I = [0,1)$ with values in $X$. Let $u_i \in C(I,X)$, $i=1,2,\cdots, n$ and $M=span\{u_1, \cdots, u_n\}$. The object of this paper is to prove that if $\{u_1, \cdots, u_n\}$ satisfies certain conditions, then for $f \in C(I,X)$ and $g \in M$ we have $||f-g|| = \inf\{||f-h|| : h\in M\}$ if and only if $f-g$ has at least $n$-zeros. An application to best local approximation in $C(I,X)$ is given.


1968 ◽  
Vol 32 ◽  
pp. 287-295 ◽  
Author(s):  
Mamoru Kanda

Let S be a locally compact (not compact) Hausdorff space satisfying the second axiom of countability and let ℬ be the σ field of all Borel subsets of S and let A be the σ-field of all the subsets of S which, for each finite measure μ defined on (S, A), are in the completed σ field of ℬ relative to μ. We denote by C0 the Banach space of continuous functions vanishing at infinity with the uniform norm and Bk the space of bounded A-measurable functions with compact support in S.


1976 ◽  
Vol 19 (2) ◽  
pp. 155-157 ◽  
Author(s):  
Charles B. Dunham

Let [α, β] be a closed interval and C[α, β] be the space of continuous functions on [α, β], For g a function on [α, β] defineLet s be a non-negative function on [α, β]. Let F be an approximating function with parameter space P such that F(A, .)∊ C[α, β] for all A∊P. The Chebyshev problem with weight s is given f ∊ C[α, β], to find a parameter A* ∊ P to minimize e(A) = ||s * (f - F(A, .))|| over A∊P. Such a parameter A* is called best and F(A*,.) is called a best approximation to f.


1997 ◽  
Vol 55 (1) ◽  
pp. 147-160 ◽  
Author(s):  
Reinhard Wolf

Let E be a Banach space. The averaging interval AI(E) is defined as the set of positive real numbers α, with the following property: For each n ∈ ℕ and for all (not necessarily distinct) x1, x2, … xn ∈ E with ∥x1∥ = ∥x2∥ = … = ∥xn∥ = 1, there is an x ∈ E, ∥x∥ = 1, such thatIt follows immediately, that AI(E) is a (perhaps empty) interval included in the closed interval [1,2]. For example in this paper it is shown that AI(E) = {α} for some 1 < α < 2, if E has finite dimension. Furthermore a complete discussion of AI(C(X)) is given, where C(X) denotes the Banach space of real valued continuous functions on a compact Hausdorff space X. Also a Banach space E is found, such that AI(E) = [1,2].


Sign in / Sign up

Export Citation Format

Share Document