scholarly journals ALTERNATION THEOREM FOR $C(I,X)$ AND APPLICATION TO BEST LOCAL APPROXIMATION

1993 ◽  
Vol 24 (2) ◽  
pp. 135-147
Author(s):  
A. AL-ZAMEL ◽  
R. KHALIL

Let $X$ be a Banach space with the approximation property, and $C(I,X)$ the space of continuous functions defined on $I = [0,1)$ with values in $X$. Let $u_i \in C(I,X)$, $i=1,2,\cdots, n$ and $M=span\{u_1, \cdots, u_n\}$. The object of this paper is to prove that if $\{u_1, \cdots, u_n\}$ satisfies certain conditions, then for $f \in C(I,X)$ and $g \in M$ we have $||f-g|| = \inf\{||f-h|| : h\in M\}$ if and only if $f-g$ has at least $n$-zeros. An application to best local approximation in $C(I,X)$ is given.

1989 ◽  
Vol 32 (3) ◽  
pp. 483-494 ◽  
Author(s):  
Paul D. Humke ◽  
M. Laczkovich

Let C[0,1] be the Banach space of continuous functions defined on [0,1] and let C be the set of functions f∈C[0,1] mapping [0,1] into itself. If f∈C, fk will denote the kth iterate of f and we put Ck = {fk:f∈C;}. The set of increasing (≡ nondecreasing) and decreasing (≡ nonincreasing) functions in C will be denoted by ℐ and D, respectively. If a function f is defined on an interval I, we let C(f) denote the set of points at which f is locally constant, i.e.We let N denote the set of positive integers and NN denote the Baire space of sequences of positive integers.


Author(s):  
Andrea Cosso ◽  
Francesco Russo

Functional Itô calculus was introduced in order to expand a functional [Formula: see text] depending on time [Formula: see text], past and present values of the process [Formula: see text]. Another possibility to expand [Formula: see text] consists in considering the path [Formula: see text] as an element of the Banach space of continuous functions on [Formula: see text] and to use Banach space stochastic calculus. The aim of this paper is threefold. (1) To reformulate functional Itô calculus, separating time and past, making use of the regularization procedures which match more naturally the notion of horizontal derivative which is one of the tools of that calculus. (2) To exploit this reformulation in order to discuss the (not obvious) relation between the functional and the Banach space approaches. (3) To study existence and uniqueness of smooth solutions to path-dependent partial differential equations which naturally arise in the study of functional Itô calculus. More precisely, we study a path-dependent equation of Kolmogorov type which is related to the window process of the solution to an Itô stochastic differential equation with path-dependent coefficients. We also study a semilinear version of that equation.


2018 ◽  
Vol 61 (3) ◽  
pp. 449-457
Author(s):  
Trond A. Abrahamsen ◽  
Petr Hájek ◽  
Olav Nygaard ◽  
Stanimir L. Troyanski

AbstractWe show that if x is a strongly extreme point of a bounded closed convex subset of a Banach space and the identity has a geometrically and topologically good enough local approximation at x, then x is already a denting point. It turns out that such an approximation of the identity exists at any strongly extreme point of the unit ball of a Banach space with the unconditional compact approximation property. We also prove that every Banach space with a Schauder basis can be equivalently renormed to satisfy the suõcient conditions mentioned.


1989 ◽  
Vol 31 (2) ◽  
pp. 131-135 ◽  
Author(s):  
Hans Jarchow

Let K be a compact Hausdorff space, and let C(K) be the corresponding Banach space of continuous functions on K. It is well-known that every 1-summing operator S:C(K)→l2 is also nuclear, and therefore factors S = S1S2, with S1:l2→l2 a Hilbert–Schmidt operator and S1:C(K)→l2 a bounded operator. It is easily seen that this latter property is preserved when C(K) is replaced by any quotient, and that a Banach space X enjoys this property if and only if its second dual, X**, does. This led A. Pełczyński [15] to ask if the second dual of a Banach space X must be isomorphic to a quotient of a C(K)-space if X has the property that every 1-summing operator X-→l2 factors through a Hilbert-Schmidt operator. In this paper, we shall first of all reformulate the question in an appropriate manner and then show that counter-examples are available among super-reflexive Tsirelson-like spaces as well as among quasi-reflexive Banach spaces.


1968 ◽  
Vol 32 ◽  
pp. 287-295 ◽  
Author(s):  
Mamoru Kanda

Let S be a locally compact (not compact) Hausdorff space satisfying the second axiom of countability and let ℬ be the σ field of all Borel subsets of S and let A be the σ-field of all the subsets of S which, for each finite measure μ defined on (S, A), are in the completed σ field of ℬ relative to μ. We denote by C0 the Banach space of continuous functions vanishing at infinity with the uniform norm and Bk the space of bounded A-measurable functions with compact support in S.


1985 ◽  
Vol 101 (3-4) ◽  
pp. 203-206 ◽  
Author(s):  
Michael Cambern

SynopsisIf X is a compact Hausdorff space and E a dual Banach space, let C(X, Eσ*) denote the Banach space of continuous functions F from X to E when the latter space is provided with its weak * topology, normed by . It is shown that if X and Y are extremally disconnected compact Hausdorff spaces and E is a uniformly convex Banach space, then the existence of an isometry between C(X, Eσ*) and C(Y, Eσ*) implies that X and Y are homeomorphic.


1989 ◽  
Vol 32 (1) ◽  
pp. 98-104 ◽  
Author(s):  
Michael Cambern ◽  
Peter Greim

AbstractA. Grothendieck has shown that if the space C(X) is a Banach dual then X is hyperstonean; moreover, the predual of C(X) is strongly unique. In this article we give a vector analogue of Grothendieck's result. We show that if E* is a reflexive Banach space and C(X, (E*, σ*)) denotes the space of continuous functions on X to E* when E* is provided with its weak* (= weak) topology then the full content of Grothendieck's theorem for C(X) can be established for C(X,(E*,σ*)). This improves a result previously obtained for the case in which E* is Hilbert space.


Sign in / Sign up

Export Citation Format

Share Document