scholarly journals The length of the continued fraction expansion for a class of rational functions in

1991 ◽  
Vol 34 (1) ◽  
pp. 7-17 ◽  
Author(s):  
Arnold Knopfmacher

A study is made of the length L(h, k) of the continued fraction algorithm for h/k where h and k are co-prime polynomials in a finite field. In addition we investigate the sum of the degrees of the partial quotients in this expansion for h/k, h, k in . The above continued fraction is determined by means of the Euclidean algorithm for the polynomials h, k in .

2018 ◽  
Vol 61 (1) ◽  
pp. 283-293
Author(s):  
Poj Lertchoosakul ◽  
Radhakrishnan Nair

AbstractLet 𝔽q be the finite field of q elements. An analogue of the regular continued fraction expansion for an element α in the field of formal Laurent series over 𝔽q is given uniquely by $$\alpha = A_0(\alpha ) + \displaystyle{1 \over {A_1(\alpha ) + \displaystyle{1 \over {A_2(\alpha ) + \ddots }}}},$$ where $(A_{n}(\alpha))_{n=0}^{\infty}$ is a sequence of polynomials with coefficients in 𝔽q such that deg(An(α)) ⩾ 1 for all n ⩾ 1. In this paper, we provide quantitative versions of metrical results regarding averages of partial quotients. A sample result we prove is that, given any ϵ > 0, we have $$\vert A_1(\alpha ) \ldots A_N(\alpha )\vert ^{1/N} = q^{q/(q - 1)} + o(N^{ - 1/2}(\log N)^{3/2 + {\rm \epsilon }})$$ for almost everywhere α with respect to Haar measure.


2009 ◽  
Vol 29 (5) ◽  
pp. 1451-1478 ◽  
Author(s):  
FRANCESCO CELLAROSI

AbstractWe prove the existence of the limiting distribution for the sequence of denominators generated by continued fraction expansions with even partial quotients, which were introduced by Schweiger [Continued fractions with odd and even partial quotients. Arbeitsberichte Math. Institut Universtät Salzburg4 (1982), 59–70; On the approximation by continues fractions with odd and even partial quotients. Arbeitsberichte Math. Institut Universtät Salzburg1–2 (1984), 105–114] and studied also by Kraaikamp and Lopes [The theta group and the continued fraction expansion with even partial quotients. Geom. Dedicata59(3) (1996), 293–333]. Our main result is proven following the strategy used by Sinai and Ulcigrai [Renewal-type limit theorem for the Gauss map and continued fractions. Ergod. Th. & Dynam. Sys.28 (2008), 643–655] in their proof of a similar renewal-type theorem for Euclidean continued fraction expansions and the Gauss map. The main steps in our proof are the construction of a natural extension of a Gauss-like map and the proof of mixing of a related special flow.


Author(s):  
Yanapat Tongron ◽  
Narakorn Rompurk Kanasri ◽  
Vichian Laohakosol

For nonzero polynomials [Formula: see text] and [Formula: see text] over a field [Formula: see text], let [Formula: see text] be the depth (length) of the continued fraction expansion for [Formula: see text]. An upper bound on [Formula: see text], for nonzero polynomial [Formula: see text] and rational function [Formula: see text] is obtained. Applying this result, an upper bound on the depth of a linear fractional transformation is also established.


Author(s):  
JINHUA CHANG ◽  
HAIBO CHEN

AbstractLet 0 ⩽ α ⩽ ∞ and ψ be a positive function defined on (0, ∞). In this paper, we will study the level sets L(α, {ψ(n)}), B(α, {ψ(n)}) and T(α, {ψ(n)}) which are related respectively to the sequence of the largest digits among the first n partial quotients {Ln(x)}n≥1, the increasing sequence of the largest partial quotients {Bn(x)}n⩾1 and the sequence of successive occurrences of the largest partial quotients {Tn(x)}n⩾1 in the continued fraction expansion of x ∈ [0,1) ∩ ℚc. Under suitable assumptions of the function ψ, we will prove that the sets L(α, {ψ(n)}), B(α, {ψ(n)}) and T(α, {ψ(n)}) are all of full Hausdorff dimensions for any 0 ⩽ α ⩽ ∞. These results complement some limit theorems given by J. Galambos [4] and D. Barbolosi and C. Faivre [1].


2020 ◽  
Vol 15 (2) ◽  
pp. 1-8
Author(s):  
Francesco Amoroso ◽  
Moubinool Omarjee

AbstractLet α be an irrational real number; the behaviour of the sum SN (α):= (−1)[α] +(−1)[2α] + ··· +(−1)[Nα] depends on the continued fraction expansion of α/2. Since the continued fraction expansion of \sqrt 2 /2 has bounded partial quotients, {S_N}\left( {\sqrt 2 } \right) = O\left( {\log \left( N \right)} \right) and this bound is best possible. The partial quotients of the continued fraction expansion of e grow slowly and thus {S_N}\left( {2e} \right) = O\left( {{{\log {{\left( N \right)}^2}} \over {\log \,\log {{\left( N \right)}^2}}}} \right), again best possible. The partial quotients of the continued fraction expansion of e/2 behave similarly as those of e. Surprisingly enough 1188.


Author(s):  
LINGLING HUANG ◽  
CHAO MA

Abstract This paper is concerned with the growth rate of the product of consecutive partial quotients relative to the denominator of the convergent for the continued fraction expansion of an irrational number. More precisely, given a natural number $m,$ we determine the Hausdorff dimension of the following set: $$ \begin{align*} E_m(\tau)=\bigg\{x\in [0,1): \limsup\limits_{n\rightarrow\infty}\frac{\log (a_n(x)a_{n+1}(x)\cdots a_{n+m}(x))}{\log q_n(x)}=\tau\bigg\}, \end{align*} $$ where $\tau $ is a nonnegative number. This extends the dimensional result of Dirichlet nonimprovable sets (when $m=1$ ) shown by Hussain, Kleinbock, Wadleigh and Wang.


2001 ◽  
Vol 64 (2) ◽  
pp. 331-343 ◽  
Author(s):  
Alfred J. van der Poorten

Dedicated to George Szekeres on his 90th birthdayWe discuss the exponential growth in the height of the coefficients of the partial quotients of the continued fraction expansion of the square root of a generic polynomial.


Sign in / Sign up

Export Citation Format

Share Document