The depth of continued fraction expansion for some classes of rational functions

Author(s):  
Yanapat Tongron ◽  
Narakorn Rompurk Kanasri ◽  
Vichian Laohakosol

For nonzero polynomials [Formula: see text] and [Formula: see text] over a field [Formula: see text], let [Formula: see text] be the depth (length) of the continued fraction expansion for [Formula: see text]. An upper bound on [Formula: see text], for nonzero polynomial [Formula: see text] and rational function [Formula: see text] is obtained. Applying this result, an upper bound on the depth of a linear fractional transformation is also established.

2019 ◽  
Vol 41 (2) ◽  
pp. 461-470
Author(s):  
ANISH GHOSH ◽  
MAXIM SØLUND KIRSEBOM ◽  
PARTHANIL ROY

In this work we deal with extreme value theory in the context of continued fractions using techniques from probability theory, ergodic theory and real analysis. We give an upper bound for the rate of convergence in the Doeblin–Iosifescu asymptotics for the exceedances of digits obtained from the regular continued fraction expansion of a number chosen randomly from $(0,1)$ according to the Gauss measure. As a consequence, we significantly improve the best known upper bound on the rate of convergence of the maxima in this case. We observe that the asymptotics of order statistics and the extremal point process can also be investigated using our methods.


1991 ◽  
Vol 34 (1) ◽  
pp. 7-17 ◽  
Author(s):  
Arnold Knopfmacher

A study is made of the length L(h, k) of the continued fraction algorithm for h/k where h and k are co-prime polynomials in a finite field. In addition we investigate the sum of the degrees of the partial quotients in this expansion for h/k, h, k in . The above continued fraction is determined by means of the Euclidean algorithm for the polynomials h, k in .


2020 ◽  
Vol 25 (2) ◽  
pp. 125-132
Author(s):  
Bal Bahadur Tamang ◽  
Ajay Singh

This article attempts to describe the continued fraction expansion of ÖD viewed as a Laurent series x-1. As the behavior of the continued fraction expansion of ÖD is related to the solvability of the polynomial Pell’s equation p2-Dq2=1  where D=f2+2g  is monic quadratic polynomial with deg g<deg f  and the solutions p, q  must be integer polynomials. It gives a non-trivial solution if and only if the continued fraction expansion of ÖD  is periodic.


2018 ◽  
Vol 27 (11) ◽  
pp. 1850170 ◽  
Author(s):  
Georgia Tsirimokou ◽  
Aslihan Kartci ◽  
Jaroslav Koton ◽  
Norbert Herencsar ◽  
Costas Psychalinos

Due to the absence of commercially available fractional-order capacitors and inductors, their implementation can be performed using fractional-order differentiators and integrators, respectively, combined with a voltage-to-current conversion stage. The transfer function of fractional-order differentiators and integrators can be approximated through the utilization of appropriate integer-order transfer functions. In order to achieve that, the Continued Fraction Expansion as well as the Oustaloup’s approximations can be utilized. The accuracy, in terms of magnitude and phase response, of transfer functions of differentiators/integrators derived through the employment of the aforementioned approximations, is very important factor for achieving high performance approximation of the fractional-order elements. A comparative study of the accuracy offered by the Continued Fraction Expansion and the Oustaloup’s approximation is performed in this paper. As a next step, the corresponding implementations of the emulators of the fractional-order elements, derived using fundamental active cells such as operational amplifiers, operational transconductance amplifiers, current conveyors, and current feedback operational amplifiers realized in commercially available discrete-component IC form, are compared in terms of the most important performance characteristics. The most suitable of them are further compared using the OrCAD PSpice software.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Mingliang Fang ◽  
Degui Yang ◽  
Dan Liu

AbstractLet c be a nonzero constant and n a positive integer, let f be a transcendental meromorphic function of finite order, and let R be a nonconstant rational function. Under some conditions, we study the relationships between the exponent of convergence of zero points of $f-R$ f − R , its shift $f(z+nc)$ f ( z + n c ) and the differences $\Delta _{c}^{n} f$ Δ c n f .


Sign in / Sign up

Export Citation Format

Share Document