scholarly journals On normal subgroups of direct products

1990 ◽  
Vol 33 (2) ◽  
pp. 309-319 ◽  
Author(s):  
F. E. A. Johnson

We investigate the equivalence classes of normal subdirect products of a product of free groups Fn1 × … × Fnk under the simultaneous equivalence relations of commensurability and conjugacy under the full automorphism group. By abelianisation, the problem is reduced to one in the representation theory of quivers of free abelian groups. We show there are infinitely many such classes when k≧3, and list the finite number of classes when k = 2.

1983 ◽  
Vol 48 (1) ◽  
pp. 197-205 ◽  
Author(s):  
Elisabeth Bouscaren ◽  
Daniel Lascar

In this paper T will always be a countable ℵ0-stable theory, and in this introduction a model of T will mean a countable model.One of the main notions we introduce is that of almost homogeneous model: we say that a model M of T is almost homogeneous if for all ā and finite sequences of elements in M, if the strong type of ā is the same as the strong type of (i.e. for all equivalence relations E, definable over the empty set and with a finite number of equivalence classes, ā and are in the same equivalence class), then there is an automorphism of M taking ā to . Although this is a weaker notion than homogeneity, these models have strong properties, and it can be seen easily that the Scott formula of any almost homogeneous model is in L1. In fact, Pillay [Pi.] has shown that almost homogeneous models are characterized by the set of types they realize.The motivation of this research is to distinguish two classes of ℵ0-Stable theories:(1) theories such that all models are almost homogeneous;(2) theories with 2ℵ0 nonalmost homogeneous models.The example of theories with Skolem functions [L. 1] (almost homogeneous is then equivalent to homogeneous) seems to indicate a link between these properties and the notion of multidimensionality, and that nonmultidimensional theories are in the first case.


2002 ◽  
Vol 2 (3) ◽  
pp. 240-254
Author(s):  
W. Duer ◽  
J.I. Cirac

We study when a multipartite non--local unitary operation can deterministically or probabilistically simulate another one when local operations of a certain kind ---in some cases including also classical communication--- are allowed. In the case of probabilistic simulation and allowing for arbitrary local operations, we provide necessary and sufficient conditions for the simulation to be possible. Deterministic and probabilistic interconversion under certain kinds of local operations are used to define equivalence relations between gates. In the probabilistic, bipartite case this induces a finite number of classes. In multiqubit systems, however, two unitary operations typically cannot simulate each other with non-zero probability of success. We also show which kind of entanglement can be created by a given non--local unitary operation and generalize our results to arbitrary operators.


Author(s):  
Trevor Evans

The techniques developed in (9) are used here to study the properties of multiplicative systems generated by one element (monogenie systems). The results are of two kinds. First, we obtain fairly complete information about the automorphisms and endo-morphisms of free and finitely related loops. The automorphism group of the free monogenie loop is the infinite cyclic group, each automorphism being obtained by mapping the generator on one of its repeated inverses. A monogenie loop with a finite, non-empty set of relations has only a finite number of endomorphisms. These are obtained by mapping the generator on some of the components, or their repeated inverses, occurring in the relations. We use the same methods to solve the isomorphism problem for monogenie loops, i.e. we give a method for determining whether two finitely related monogenie loops are isomorphic. The decision method consists essentially of constructing all homomorphisms between two given finitely related monogenie loops.


Author(s):  
Soochan Hwang ◽  
Sang-Young Cho ◽  
Taehyung Wang ◽  
Phillip C.-Y. Sheu

This paper describes a 3-D visualization method based on the concept of characteristic views (CVs). The idea of characteristic views was derived based on the observation that the infinite possible views of a 3-D object can be grouped into a finite number of equivalence classes so that within each class all the views are isomorphic in the sense that they have the same line-junction graphs. To visualize the changes of scenes in real time, the BSP tree algorithm is known to be efficient in a static environment in which the viewpoint can be changed easily. However, if a scene consists of many objects and each object consists of many polygons, the time complexity involved in traversing a BSP tree increases rapidly so that the original BSP tree algorithm may not be efficient. The method proposed in this paper is object-oriented in the sense that, for all viewpoints, at the preprocessing stage the ordering for displaying the objects is determined. At run time, the objects are displayed based on a pre-calculated ordering according to the viewpoint. In addition, a CV is used as a basic 2-D projected image of a 3-D object.


2016 ◽  
Vol 38 (4) ◽  
pp. 1588-1600 ◽  
Author(s):  
VILLE SALO

We discuss the set of subgroups of the automorphism group of a full shift and submonoids of its endomorphism monoid. We prove closure under direct products in the monoid case and free products in the group case. We also show that the automorphism group of a full shift embeds in that of an uncountable sofic shift. Some undecidability results are obtained as corollaries.


Author(s):  
Thomas J. Laffey ◽  
Desmond MacHale

AbstractLet G be a finite group and let Aut(G) be its automorphism group. Then G is called a k-orbit group if G has k orbits (equivalence classes) under the action of Aut(G). (For g, hG, we have g ~ h if ga = h for some Aut(G).) It is shown that if G is a k-orbit group, then kGp + 1, where p is the least prime dividing the order of G. The 3-orbit groups which are not of prime-power order are classified. It is shown that A5 is the only insoluble 4-orbit group, and a structure theorem is proved about soluble 4-orbit groups.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ellen Henke

Abstract We show that the automorphism group of a linking system associated to a saturated fusion system $\mathcal {F}$ depends only on $\mathcal {F}$ as long as the object set of the linking system is $\mathrm {Aut}(\mathcal {F})$ -invariant. This was known to be true for linking systems in Oliver’s definition, but we demonstrate that the result holds also for linking systems in the considerably more general definition introduced previously by the author of this article. A similar result is proved for linking localities, which are group-like structures corresponding to linking systems. Our argument builds on a general lemma about the existence of an extension of a homomorphism between localities. This lemma is also used to reprove a theorem of Chermak showing that there is a natural bijection between the sets of partial normal subgroups of two possibly different linking localities over the same fusion system.


2009 ◽  
Vol 2009 ◽  
pp. 1-12 ◽  
Author(s):  
Jeffrey M. Riedl

We present a useful new characterization of the automorphisms of the regular wreath product group of a finite cyclic -group by a finite cyclic -group, for any prime , and we discuss an application. We also present a short new proof, based on representation theory, for determining the order of the automorphism group Aut(), where is the regular wreath product of a finite cyclic -group by an arbitrary finite -group.


2012 ◽  
Vol 55 (2) ◽  
pp. 390-399 ◽  
Author(s):  
Jeffrey M. Riedl

AbstractWe determine the order of the automorphism group Aut(W) for each member W of an important family of finite p-groups that may be constructed as iterated regular wreath products of cyclic groups. We use a method based on representation theory.


2020 ◽  
Vol 32 (5) ◽  
pp. 912-968 ◽  
Author(s):  
Asieh Abolpour Mofrad ◽  
Anis Yazidi ◽  
Hugo L. Hammer ◽  
Erik Arntzen

Stimulus equivalence (SE) and projective simulation (PS) study complex behavior, the former in human subjects and the latter in artificial agents. We apply the PS learning framework for modeling the formation of equivalence classes. For this purpose, we first modify the PS model to accommodate imitating the emergence of equivalence relations. Later, we formulate the SE formation through the matching-to-sample (MTS) procedure. The proposed version of PS model, called the equivalence projective simulation (EPS) model, is able to act within a varying action set and derive new relations without receiving feedback from the environment. To the best of our knowledge, it is the first time that the field of equivalence theory in behavior analysis has been linked to an artificial agent in a machine learning context. This model has many advantages over existing neural network models. Briefly, our EPS model is not a black box model, but rather a model with the capability of easy interpretation and flexibility for further modifications. To validate the model, some experimental results performed by prominent behavior analysts are simulated. The results confirm that the EPS model is able to reliably simulate and replicate the same behavior as real experiments in various settings, including formation of equivalence relations in typical participants, nonformation of equivalence relations in language-disabled children, and nodal effect in a linear series with nodal distance five. Moreover, through a hypothetical experiment, we discuss the possibility of applying EPS in further equivalence theory research.


Sign in / Sign up

Export Citation Format

Share Document