scholarly journals GENERATORS FOR $\mathcal{H}$-INVARIANT PRIME IDEALS IN $O_{q}(\mathcal{M}_{m,p}(\mathbb{C}))$

2004 ◽  
Vol 47 (1) ◽  
pp. 163-190 ◽  
Author(s):  
Stéphane Launois

AbstractIt is known that, for generic $q$, the $\mathcal{H}$-invariant prime ideals in $O_{q}(\mathcal{M}_{m,p}(\mathbb{C}))$ are generated by quantum minors (see S. Launois, Les idéaux premiers invariants de $O_{q}(\mathcal{M}_{m,p}(\mathbb{C}))$, J. Alg., in press). In this paper, $m$ and $p$ being given, we construct an algorithm which computes a generating set of quantum minors for each $\mathcal{H}$-invariant prime ideal in $O_{q}(\mathcal{M}_{m,p}(\mathbb{C}))$. We also describe, in the general case, an explicit generating set of quantum minors for some particular $\mathcal{H}$-invariant prime ideals in $O_{q}(\mathcal{M}_{m,p}(\mathbb{C}))$. In particular, if $(Y_{i,\alpha})_{(i,\alpha)\in[[1,m]]\times[[1,p]]}$ denotes the matrix of the canonical generators of $O_{q}(\mathcal{M}_{m,p}(\mathbb{C}))$, we prove that, if $u\geq3$, the ideal in $O_{q}(\mathcal{M}_{m,p}(\mathbb{C}))$ generated by $Y_{1,p}$ and the $u\times u$ quantum minors is prime. This result allows Lenagan and Rigal to show that the quantum determinantal factor rings of $O_{q}(\mathcal{M}_{m,p}(\mathbb{C}))$ are maximal orders (see T. H. Lenagan and L. Rigal, Proc. Edinb. Math. Soc.46 (2003), 513–529).AMS 2000 Mathematics subject classification: Primary 16P40. Secondary 16W35; 20G42

1999 ◽  
Vol 42 (3) ◽  
pp. 621-640 ◽  
Author(s):  
Laurent Rigal

Let Kq[X] = Oq(M(m, n)) be the quantization of the ring of regular functions on m × n matrices and Iq (X) be the ideal generated by the 2 × 2 quantum minors of the matrix X=(Xij)l≤i≤m, I≤j≤n of generators of Kq[X]. The residue class ring Rq(X) = Kq[X]/Iq(X) (a quantum analogue of determinantal rings) is shown to be an integral domain and a maximal order in its divisionring of fractions. For the proof we use a general lemma concerning maximalorders that we first establish. This lemma actually applies widely to prime factors of quantum algebras. We also prove that, if the parameter isnot a root of unity, all the prime factors of the uniparameter quantum space are maximal orders in their division ring of fractions.


Author(s):  
L. S. Goddard

The fact that the prime ideal associated with a given irreducible algebraic variety has a finite basis is a pure existence theorem. Only in a few isolated particular cases has the base for the ideal been found, and there appears to be no general method for determining the base which can be carried out in practice. Hilbert, who initiated the theory, proved that the prime ideal defining the ordinary twisted cubic curve has a base consisting of three quadrics, and contributions to the ideal theory of algebraic varieties have been made by König, Lasker, Macaulay and, more recently, by Zariski. A good summary, from the viewpoint of a geometer, is given by Bertini [(1), Chapter XII]. However, the tendency has been towards the development of the pure theory. In the following paper we actually find the bases for the prime ideals associated with certain classes of algebraic varieties. The paper falls into two parts. In Part I there is proved a theorem (the Principal Theorem) of wide generality, and then examples are given of some classes of varieties satisfying the conditions of the theorem. In Part II we find the base for the prime ideals associated with Veronesean varieties and varieties of Segre. The latter are particularly interesting since they represent (1, 1), without exception, the points of a multiply-projective space.


Author(s):  
Kenneth Rogers

Let α be a prime element of the ring of integers of an algebraic number field, R. Mr C. Sudler verbally raised the question as to how many prime ideal factors α can have. This is equivalent to a problem on the group of ideal classes of R, as we now show. If there is a prime α = p1p2 … Pk, where the prime ideal pi, is in the ideal class Pi, then P1P2…Pk equals the identity class, but no subproduct has this property. The converse holds since every ideal class contains prime ideals. So the problem is equivalent to one on finite Abelian groups, which we now write additively.


1996 ◽  
Vol 39 (1) ◽  
pp. 1-25 ◽  
Author(s):  
Allen D. Bell ◽  
Shubhangi S. Stalder ◽  
Mark L. Teply

In this paper we study the ideal structure of the direct limit and direct sum (with a special multiplication) of a directed system of rings; this enables us to give descriptions of the prime ideals and radicals of semigroup rings and semigroup-graded rings.We show that the ideals in the direct limit correspond to certain families of ideals from the original rings, with prime ideals corresponding to “prime” families. We then assume the indexing set is a semigroup ft with preorder defined by α≺β if β is in the ideal generated by α, and we use the direct sum to construct an Ω-graded ring; this construction generalizes the concept of a strong supplementary semilattice sum of rings. We show the prime ideals in this direct sum correspond to prime ideals in the direct limits taken over complements of prime ideals in Ω when two conditions are satisfied; one consequence is that when these conditions are satisfied, the prime ideals in the semigroup ring S[ft] correspond bijectively to pairs (Φ, Q) with Φ a prime ideal of Ω and Q a prime ideal of S. The two conditions are satisfied in many bands and in any commutative semigroup in which the powers of every element become stationary. However, we show that the above correspondence fails when Ω is an infinite free band, by showing that S[Ω] is prime whenever S is.When Ω satisfies the above-mentioned conditions, or is an arbitrary band, we give a description of the radical of the direct sum of a system in terms of the radicals of the component rings for a class of radicals which includes the Jacobson radical and the upper nil radical. We do this by relating the semigroup-graded direct sum to a direct sum indexed by the largest semilattice quotient of Ω, and also to the direct product of the component rings.


2013 ◽  
Vol 38 ◽  
pp. 49-59
Author(s):  
MS Raihan

A convex subnearlattice of a nearlattice S containing a fixed element n?S is called an n-ideal. The n-ideal generated by a single element is called a principal n-ideal. The set of finitely generated principal n-ideals is denoted by Pn(S), which is a nearlattice. A distributive nearlattice S with 0 is called m-normal if its every prime ideal contains at most m number of minimal prime ideals. In this paper, we include several characterizations of those Pn(S) which form m-normal nearlattices. We also show that Pn(S) is m-normal if and only if for any m+1 distinct minimal prime n-ideals Po,P1,…., Pm of S, Po ? … ? Pm = S. DOI: http://dx.doi.org/10.3329/rujs.v38i0.16548 Rajshahi University J. of Sci. 38, 49-59 (2010)


1974 ◽  
Vol 26 (5) ◽  
pp. 1186-1191 ◽  
Author(s):  
H. H. Brungs

Let R be a right hereditary domain in which all right ideals are two-sided (i.e., R is right invariant). We show that R is the intersection of generalized discrete valuation rings and that every right ideal is the product of prime ideals. This class of rings seems comparable with (and contains) the class of commutative Dedekind domains, but the rings considered here are in general not maximal orders and not Dedekind rings in the terminology of Robson [9]. The left order of a right ideal of such a ring is a ring of the same kind and the class contains right principal ideal domains in which the maximal right ideals are two-sided [6].


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Berhanu Assaye Alaba ◽  
Derso Abeje Engidaw

In this paper, we introduce the concept of L-fuzzy semiprime ideal in a general poset. Characterizations of L-fuzzy semiprime ideals in posets as well as characterizations of an L-fuzzy semiprime ideal to be L-fuzzy prime ideal are obtained. Also, L-fuzzy prime ideals in a poset are characterized.


1988 ◽  
Vol 53 (1) ◽  
pp. 284-293 ◽  
Author(s):  
T. G. Kucera

This is the second of two papers based on Chapter V of the author's Ph.D. thesis [K1]. For acknowledgements please refer to [K3]. In this paper I apply some of the ideas and techniques introduced in [K3] to the study of a very specific example. I obtain an upper bound for the positive Deissler rank of an injective module over a commutative Noetherian ring in terms of Krull dimension. The problem of finding lower bounds is vastly more difficult and is not addressed here, although I make a few comments and a conjecture at the end.For notation, terminology and definitions, I refer the reader to [K3]. I also use material on ideals and injective modules from [N] and [Ma]. Deissler's rank was introduced in [D].For the most part, in this paper all modules are unitary left modules over a commutative Noetherian ring Λ but in §1 I begin with a few useful results on totally transcendental modules and the relation between Deissler's rank rk and rk+.Recall that if P is a prime ideal of Λ, then an ideal I of Λ is P-primary if I ⊂ P, λ ∈ P implies that λn ∈ I for some n and if λµ ∈ I, λ ∉ P, then µ ∈ I. The intersection of finitely many P-primary ideals is again P-primary, and any P-primary ideal can be written as the intersection of finitely many irreducible P-primary ideals since Λ is Noetherian. Every irreducible ideal is P-primary for some prime ideal P. In addition, it will be important to recall that if P and Q are prime ideals, I is P-primary, J is Q-primary, and J ⊃ I, then Q ⊃ P. (All of these results can be found in [N].)


2016 ◽  
Vol 12 (02) ◽  
pp. 445-463 ◽  
Author(s):  
Sungjin Kim

For a field of definition [Formula: see text] of an abelian variety [Formula: see text] and prime ideal [Formula: see text] of [Formula: see text] which is of a good reduction for [Formula: see text], the structure of [Formula: see text] as abelian group is: [Formula: see text] where [Formula: see text], [Formula: see text], and [Formula: see text] for [Formula: see text]. We are interested in finding an asymptotic formula for the number of prime ideals [Formula: see text] with [Formula: see text], [Formula: see text] has a good reduction at [Formula: see text], [Formula: see text]. We succeed in proving this under the assumption of the Generalized Riemann Hypothesis (GRH). Unconditionally, we achieve a short range asymptotic for abelian varieties of CM type, and the full cyclicity theorem for elliptic curves over a number field containing the CM field.


1998 ◽  
Vol 40 (2) ◽  
pp. 223-236 ◽  
Author(s):  
Gary F. Birkenmeier ◽  
Jin Yong Kim ◽  
Jae Keol Park

AbstractLet P be a prime ideal of a ring R, O(P) = {a ∊ R | aRs = 0, for some s ∊ R/P} | and Ō(P) = {x ∊ R | xn ∊ O(P), for some positive integer n}. Several authors have obtained sheaf representations of rings whose stalks are of the form R/O(P). Also in a commutative ring a minimal prime ideal has been characterized as a prime ideal P such that P= Ō(P). In this paper we derive various conditions which ensure that a prime ideal P = Ō(P). The property that P = Ō(P) is then used to obtain conditions which determine when R/O(P) has a unique minimal prime ideal. Various generalizations of O(P) and Ō(P) are considered. Examples are provided to illustrate and delimit our results.


Sign in / Sign up

Export Citation Format

Share Document