scholarly journals Computational Complexity of Topological Invariants

2014 ◽  
Vol 58 (1) ◽  
pp. 27-32
Author(s):  
Manuel Amann

AbstractWe answer the following question posed by Lechuga: given a simply connected spaceXwith bothH*(X; ℚ) and π*(X) ⊗ ℚ being finite dimensional, what is the computational complexity of an algorithm computing the cup length and the rational Lusternik—Schnirelmann category ofX?Basically, by a reduction from the decision problem of whether a given graph isk-colourable fork≥ 3, we show that even stricter versions of the problems above are NP-hard.

1987 ◽  
Vol 10 (1) ◽  
pp. 1-33
Author(s):  
Egon Börger ◽  
Ulrich Löwen

We survey and give new results on logical characterizations of complexity classes in terms of the computational complexity of decision problems of various classes of logical formulas. There are two main approaches to obtain such results: The first approach yields logical descriptions of complexity classes by semantic restrictions (to e.g. finite structures) together with syntactic enrichment of logic by new expressive means (like e.g. fixed point operators). The second approach characterizes complexity classes by (the decision problem of) classes of formulas determined by purely syntactic restrictions on the formation of formulas.


1986 ◽  
Vol 9 (3) ◽  
pp. 323-342
Author(s):  
Joseph Y.-T. Leung ◽  
Burkhard Monien

We consider the computational complexity of finding an optimal deadlock recovery. It is known that for an arbitrary number of resource types the problem is NP-hard even when the total cost of deadlocked jobs and the total number of resource units are “small” relative to the number of deadlocked jobs. It is also known that for one resource type the problem is NP-hard when the total cost of deadlocked jobs and the total number of resource units are “large” relative to the number of deadlocked jobs. In this paper we show that for one resource type the problem is solvable in polynomial time when the total cost of deadlocked jobs or the total number of resource units is “small” relative to the number of deadlocked jobs. For fixed m ⩾ 2 resource types, we show that the problem is solvable in polynomial time when the total number of resource units is “small” relative to the number of deadlocked jobs. On the other hand, when the total number of resource units is “large”, the problem becomes NP-hard even when the total cost of deadlocked jobs is “small” relative to the number of deadlocked jobs. The results in the paper, together with previous known ones, give a complete delineation of the complexity of this problem under various assumptions of the input parameters.


2021 ◽  
Vol 13 (2) ◽  
pp. 1-20
Author(s):  
Sushmita Gupta ◽  
Pranabendu Misra ◽  
Saket Saurabh ◽  
Meirav Zehavi

An input to the P OPULAR M ATCHING problem, in the roommates setting (as opposed to the marriage setting), consists of a graph G (not necessarily bipartite) where each vertex ranks its neighbors in strict order, known as its preference. In the P OPULAR M ATCHING problem the objective is to test whether there exists a matching M * such that there is no matching M where more vertices prefer their matched status in M (in terms of their preferences) over their matched status in M *. In this article, we settle the computational complexity of the P OPULAR M ATCHING problem in the roommates setting by showing that the problem is NP-complete. Thus, we resolve an open question that has been repeatedly and explicitly asked over the last decade.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yuri Berest ◽  
Ajay C. Ramadoss ◽  
Yining Zhang

Abstract Let X be a simply connected closed oriented manifold of rationally elliptic homotopy type. We prove that the string topology bracket on the $S^1$ -equivariant homology $ {\overline {\text {H}}}_\ast ^{S^1}({\mathcal {L}} X,{\mathbb {Q}}) $ of the free loop space of X preserves the Hodge decomposition of $ {\overline {\text {H}}}_\ast ^{S^1}({\mathcal {L}} X,{\mathbb {Q}}) $ , making it a bigraded Lie algebra. We deduce this result from a general theorem on derived Poisson structures on the universal enveloping algebras of homologically nilpotent finite-dimensional DG Lie algebras. Our theorem settles a conjecture of [7].


1999 ◽  
Vol 19 (3) ◽  
pp. 559-569
Author(s):  
D. BENARDETE ◽  
S. G. DANI

Given a Lie group $G$ and a lattice $\Gamma$ in $G$, a one-parameter subgroup $\phi$ of $G$ is said to be rigid if for any other one-parameter subgroup $\psi$, the flows induced by $\phi$ and $\psi$ on $\Gamma\backslash G$ (by right translations) are topologically orbit-equivalent only if they are affinely orbit-equivalent. It was previously known that if $G$ is a simply connected solvable Lie group such that all the eigenvalues of $\mathrm{Ad} (g) $, $g\in G$, are real, then all one-parameter subgroups of $G$ are rigid for any lattice in $G$. Here we consider a complementary case, in which the eigenvalues of $\mathrm{Ad} (g)$, $g\in G$, form the unit circle of complex numbers.Let $G$ be the semidirect product $N \rtimes M$, where $M$ and $N$ are finite-dimensional real vector spaces and where the action of $M$ on the normal subgroup $N$ is such that the center of $G$ is a lattice in $M$. We prove that there is a generic class of abelian lattices $\Gamma$ in $G$ such that any semisimple one-parameter subgroup $\phi$ (namely $\phi$ such that $\mathrm{Ad} (\phi_t)$ is diagonalizable over the complex numbers for all $t$) is rigid for $\Gamma$ (see Theorem 1.4). We also show that, on the other hand, there are fairly high-dimensional spaces of abelian lattices for which some semisimple $\phi$ are not rigid (see Corollary 4.3); further, there are non-rigid semisimple $\phi$ for which the induced flow is ergodic.


1970 ◽  
Vol 22 (6) ◽  
pp. 1129-1132
Author(s):  
William J. Gilbert

Let cat be the Lusternik-Schnirelmann category structure as defined by Whitehead [6] and let be the category structure as defined by Ganea [2],We prove thatandIt is known that w ∑ cat X = conil X for connected X. Dually, if X is simply connected,1. We work in the category of based topological spaces with the based homotopy type of CW-complexes and based homotopy classes of maps. We do not distinguish between a map and its homotopy class. Constant maps are denoted by 0 and identity maps by 1.We recall some notions from Peterson's theory of structures [5; 1] which unify the definitions of the numerical homotopy invariants akin to the Lusternik-Schnirelmann category.


1985 ◽  
Vol 40 (9) ◽  
pp. 957-958
Author(s):  
Pinaki Roy ◽  
Rajkumar Roychoudhury

Abstract We consider QCD in R3 x S1 and show that non-trivial global space-time topology breaks chiral symmetry.


Author(s):  
CHANGSONG QI ◽  
JIGUI SUN

Model net proposed in this paper is a kind of directed graph used to represent and analyze the static structure of a modelbase. After the formal definition of the model net was given, a construction algorithm is introduced. Then, two simplification algorithms are put forward to show how this approach can reduce the computational complexity of model composition for a specific decision problem. In succession, a model composition algorithm is worked out based on the simplification algorithms. As a result, this algorithm is capable of finding out all the candidate composite models for a specific decision problem. Finally, several advantages of the model net are discussed briefly.


Sign in / Sign up

Export Citation Format

Share Document