Answers to Some Questions Concerning Rings with Property (A)

2017 ◽  
Vol 60 (3) ◽  
pp. 651-664 ◽  
Author(s):  
E. Hashemi ◽  
A. AS. Estaji ◽  
M. Ziembowski

AbstractA ring R has right property (A) whenever a finitely generated two-sided ideal of R consisting entirely of left zero-divisors has a non-zero right annihilator. As the main result of this paper we give answers to two questions related to property (A), raised by Hong et al. One of the questions has a positive answer and we obtain it as a simple conclusion of the fact that if R is a right duo ring and M is a u.p.-monoid (unique product monoid), then R is right M-McCoy and the monoid ring R[M] has right property (A). The second question has a negative answer and we demonstrate this by constructing a suitable example.

2016 ◽  
Vol 16 (07) ◽  
pp. 1750133 ◽  
Author(s):  
Abdollah Alhevaz ◽  
Ebrahim Hashemi ◽  
Michał Ziembowski

Armendariz rings are generalization of reduced rings, and therefore, the set of nilpotent elements plays an important role in this class of rings. There are many examples of rings with nonzero nilpotent elements which are Armendariz. Observing structure of the set of all nilpotent elements in the class of Armendariz rings, Antoine introduced the notion of nil-Armendariz rings as a generalization, which are connected to the famous question of Amitsur of whether or not a polynomial ring over a nil coefficient ring is nil. Given an associative ring [Formula: see text] and a monoid [Formula: see text], we introduce and study a class of Armendariz-like rings defined by using the properties of upper and lower nilradicals of the monoid ring [Formula: see text]. The logical relationship between these and other significant classes of Armendariz-like rings are explicated with several examples. These new classes of rings provide the appropriate setting for obtaining results on radicals of the monoid rings of unique product monoids and also can be used to construct new classes of nil-Armendariz rings. We also classify, which of the standard nilpotence properties on polynomial rings pass to monoid rings. As a consequence, we extend and unify several known results.


2019 ◽  
Vol 26 (04) ◽  
pp. 665-676
Author(s):  
Ebrahim Hashemi ◽  
Abdollah Alhevaz

Let R be an associative ring with identity and Z*(R) be its set of non-zero zero-divisors. The undirected zero-divisor graph of R, denoted by Γ(R), is the graph whose vertices are the non-zero zero-divisors of R, and where two distinct vertices r and s are adjacent if and only if rs = 0 or sr = 0. The distance between vertices a and b is the length of the shortest path connecting them, and the diameter of the graph, diam(Γ(R)), is the superimum of these distances. In this paper, first we prove some results about Γ(R) of a semi-commutative ring R. Then, for a reversible ring R and a unique product monoid M, we prove 0≤ diam(Γ(R))≤ diam(Γ(R[M]))≤3. We describe all the possibilities for the pair diam(Γ(R)) and diam(Γ(R[M])), strictly in terms of the properties of a ring R, where R is a reversible ring and M is a unique product monoid. Moreover, an example showing the necessity of our assumptions is provided.


2016 ◽  
Vol 16 (09) ◽  
pp. 1750164
Author(s):  
E. Hashemi ◽  
A. As. Estaji ◽  
A. Alhevaz

The study of rings with right Property ([Formula: see text]), has done an important role in noncommutative ring theory. Following literature, a ring [Formula: see text] has right Property ([Formula: see text]) if every finitely generated two-sided ideal consisting entirely of left zero-divisors has a nonzero right annihilator. Our results in this paper concerns the right Property ([Formula: see text]) of Ore extensions as well as skew power series rings. We will show that if [Formula: see text] is a right duo ring, then the skew power series ring [Formula: see text] has right Property ([Formula: see text]), when [Formula: see text] is right Noetherian and [Formula: see text]-compatible. Moreover, for a right duo ring [Formula: see text] which is [Formula: see text]-compatible, it is shown that (i) the Ore extension ring [Formula: see text] has right Property ([Formula: see text]) and (ii) [Formula: see text] is right zip if and only if [Formula: see text] is right zip. As a corollary of our results, we provide answers to some open questions related to Property [Formula: see text], raised in [C. Y. Hong, N. K. Kim, Y. Lee and S. J. Ryu, Rings with Property ([Formula: see text]) and their extensions, J. Algebra 315 (2007) 612–628].


2016 ◽  
Vol 16 (09) ◽  
pp. 1750163
Author(s):  
Rasoul Ahangari Maleki

Let [Formula: see text] be a Noetherian local ring with maximal ideal [Formula: see text] and residue field [Formula: see text]. The linearity defect of a finitely generated [Formula: see text]-module [Formula: see text], which is denoted [Formula: see text], is a numerical measure of how far [Formula: see text] is from having linear resolution. We study the linearity defect of the residue field. We give a positive answer to the question raised by Herzog and Iyengar of whether [Formula: see text] implies [Formula: see text], in the case when [Formula: see text].


1967 ◽  
Vol 10 (4) ◽  
pp. 595-596 ◽  
Author(s):  
Kwangil Koh

Let R be a topological (Hausdorff) ring such that for each a ∊ R, aR and Ra are closed subsets of R. We will prove that if the set of non - trivial right (left) zero divisors of R is a non-empty set and the set of all right (left) zero divisors of R is a compact subset of R, then R is a compact ring. This theorem has an interesting corollary. Namely, if R is a discrete ring with a finite number of non - trivial left or right zero divisors then R is a finite ring (Refer [1]).


Author(s):  
Rasul Mohammadi ◽  
Ahmad Moussavi ◽  
Masoome Zahiri

Let [Formula: see text] be an associative ring with identity. A right [Formula: see text]-module [Formula: see text] is said to have Property ([Formula: see text]), if each finitely generated ideal [Formula: see text] has a nonzero annihilator in [Formula: see text]. Evans [Zero divisors in Noetherian-like rings, Trans. Amer. Math. Soc. 155(2) (1971) 505–512.] proved that, over a commutative ring, zero-divisor modules have Property ([Formula: see text]). We study and construct various classes of modules with Property ([Formula: see text]). Following Anderson and Chun [McCoy modules and related modules over commutative rings, Comm. Algebra 45(6) (2017) 2593–2601.], we introduce [Formula: see text]-dual McCoy modules and show that, for every strictly totally ordered monoid [Formula: see text], faithful symmetric modules are [Formula: see text]-dual McCoy. We then use this notion to give a characterization for modules with Property ([Formula: see text]). For a faithful symmetric right [Formula: see text]-module [Formula: see text] and a strictly totally ordered monoid [Formula: see text], it is proved that the right [Formula: see text]-module [Formula: see text] is primal if and only if [Formula: see text] is primal with Property ([Formula: see text]).


Author(s):  
V. V. Mykhaylyuk

A connection between the separability and the countable chain condition of spaces withL-property (a topological spaceXhasL-property if for every topological spaceY, separately continuous functionf:X×Y→ℝand open setI⊆ℝ,the setf−1(I)is anFσ-set) is studied. We show that every completely regular Baire space with theL-property and the countable chain condition is separable and constructs a nonseparable completely regular space with theL-property and the countable chain condition. This gives a negative answer to a question of M. Burke.


1997 ◽  
Vol 20 (4) ◽  
pp. 575-576 ◽  
Author(s):  
Brian J. Scholl

Is (some) innate cognitive modularity consistent with a lack of innate neural modularity? Quartz & Sejnowski's (Q&S's) implicit negative answer to his question fuels their antinativist and antimodular cognitive conclusions. I attempt here to suggest a positive answer and to solicit discussion of this crucial issue.


1974 ◽  
Vol 39 (2) ◽  
pp. 305-309 ◽  
Author(s):  
Leo Harrington

It is well known that a decidable theory possesses a recursively presentable model. If a decidable theory also possesses a prime model, it is natural to ask if the prime model has a recursive presentation. This has been answered affirmatively for algebraically closed fields [5], and for real closed fields, Hensel fields and other fields [3]. This paper gives a positive answer for the theory of differentially closed fields, and for any decidable ℵ1-categorical theory.The language of a theory T is denoted by L(T). All languages will be presumed countable. An x-type of T is a set of formulas with free variables x, which is consistent with T and which is maximal in this property. A formula with free variables x is complete if there is exactly one x-type containing it. A type is principal if it contains a complete formula. A countable model of T is prime if it realizes only principal types. Vaught has shown that a complete countable theory can have at most one prime model up to isomorphism.If T is a decidable theory, then the decision procedure for T equips L(T) with an effective counting. Thus the formulas of L(T) correspond to integers. The integer a formula φ(x) corresponds to is generally called the Gödel number of φ(x) and is denoted by ⌜φ(x)⌝. The usual recursion theoretic notions defined on the set of integers can be transferred to L(T). In particular a type Γ is recursive with index e if {⌜φ⌝.; φ ∈ Γ} is a recursive set of integers with index e.


Author(s):  
Andrea Iacona

AbstractThis paper addresses the question whether future contingents are knowable, that is, whether one can know that things will go a certain way even though it is possible that things will not go that way. First I will consider a long-established view that implies a negative answer, and draw attention to some endemic problems that affect its credibility. Then I will sketch an alternative line of thought that prompts a positive answer: future contingents are knowable, although our epistemic access of them is limited in some important respects.


Sign in / Sign up

Export Citation Format

Share Document