scholarly journals Asymptotic Behaviour of the Energy Integral of a Two-Parameter Homogenization Problem with Nonlinear Periodic Robin Boundary Conditions

2019 ◽  
Vol 62 (4) ◽  
pp. 985-1016 ◽  
Author(s):  
Massimo Lanza de Cristoforis ◽  
Paolo Musolino

AbstractWe consider a nonlinear Robin problem for the Poisson equation in an unbounded periodically perforated domain. The domain has a periodic structure, and the size of each cell is determined by a positive parameter δ. The relative size of each periodic perforation is determined by a positive parameter ε. Under suitable assumptions, such a problem admits a family of solutions which depends on ε and δ. We analyse the behaviour the energy integral of such a family as (ε, δ) tends to (0, 0) by an approach that represents an alternative to asymptotic expansions and classical homogenization theory.

Author(s):  
Alip Mohammed ◽  
M. W. Wong

The Riemann–Hilbert–Poincaré problem with general coefficient for the inhomogeneous Cauchy–Riemann equation on the unit disc is studied using Fourier analysis. It is shown that the problem is well posed only if the coeffcient is holomorphic. If the coefficient has a pole, then the problem is transformed into a system of linear equations and a finite number of boundary conditions are imposed in order to find a unique and explicit solution. In the case when the coefficient has an essential singularity, it is shown that the problem is well posed only for the Robin boundary condition.


2017 ◽  
Vol 21 (6) ◽  
pp. 135-140
Author(s):  
A.V. Filinovskiy

The paper presents the investigation of an eigenvalue problem for the Laplace operator with Robin boundary condition in a bounded domain with smooth boundary. The case of boundary condition containing a real parameter is con- sidered. It is proved that multiplicity of the eigenvalue to the Robin problem for all values of the parameter greater than some number does not exceed the mul- tiplicity of the corresponding eigenvalue to the Dirichlet problem for the Laplace operator. For simple eigenvalue of the Dirichlet problem the convergence of eigen- function of the Robin problem to the eigenfunction of the Dirichlet problem for unlimited increase of the parameter is proved. The formula for derivative on the parameter for eigenvalues of the Robin problem is established. This formula is used to justify the asymptotic expansions of eigenvalues of the Robin problem for large positive values of the parameter.


2011 ◽  
Vol 21 (05) ◽  
pp. 1153-1192 ◽  
Author(s):  
JINGYU LI ◽  
KAIJUN ZHANG

We consider the problem of reinforcing an elastic medium by a strong, rough, thin external layer. This model is governed by the Poisson equation with homogeneous Dirichlet boundary condition. We characterize the asymptotic behavior of the solution as the shear modulus of the layer goes to infinity. We find that there are four types of behaviors: the limiting solution satisfies Poisson equation with Dirichlet boundary condition, Robin boundary condition or Neumann boundary condition, or the limiting solution does not exist. The specific type depends on the integral of the load on the medium, the curvature of the interface and the scaling relations among the shear modulus, the thickness and the oscillation period of the layer.


2021 ◽  
pp. 1-27
Author(s):  
Xavier Blanc ◽  
Sylvain Wolf

We study the Poisson equation in a perforated domain with homogeneous Dirichlet boundary conditions. The size of the perforations is denoted by ε > 0, and is proportional to the distance between neighbouring perforations. In the periodic case, the homogenized problem (obtained in the limit ε → 0) is well understood (see (Rocky Mountain J. Math. 10 (1980) 125–140)). We extend these results to a non-periodic case which is defined as a localized deformation of the periodic setting. We propose geometric assumptions that make precise this setting, and we prove results which extend those of the periodic case: existence of a corrector, convergence to the homogenized problem, and two-scale expansion.


Sign in / Sign up

Export Citation Format

Share Document