scholarly journals Delta- and Daugavet points in Banach spaces

2020 ◽  
Vol 63 (2) ◽  
pp. 475-496
Author(s):  
T. A. Abrahamsen ◽  
R. Haller ◽  
V. Lima ◽  
K. Pirk

AbstractA Δ-point x of a Banach space is a norm-one element that is arbitrarily close to convex combinations of elements in the unit ball that are almost at distance 2 from x. If, in addition, every point in the unit ball is arbitrarily close to such convex combinations, x is a Daugavet point. A Banach space X has the Daugavet property if and only if every norm-one element is a Daugavet point. We show that Δ- and Daugavet points are the same in L1-spaces, in L1-preduals, as well as in a big class of Müntz spaces. We also provide an example of a Banach space where all points on the unit sphere are Δ-points, but none of them are Daugavet points. We also study the property that the unit ball is the closed convex hull of its Δ-points. This gives rise to a new diameter-two property that we call the convex diametral diameter-two property. We show that all C(K) spaces, K infinite compact Hausdorff, as well as all Müntz spaces have this property. Moreover, we show that this property is stable under absolute sums.

Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2346
Author(s):  
Almudena Campos-Jiménez ◽  
Francisco Javier García-Pacheco

In this paper we provide new geometric invariants of surjective isometries between unit spheres of Banach spaces. Let X,Y be Banach spaces and let T:SX→SY be a surjective isometry. The most relevant geometric invariants under surjective isometries such as T are known to be the starlike sets, the maximal faces of the unit ball, and the antipodal points (in the finite-dimensional case). Here, new geometric invariants are found, such as almost flat sets, flat sets, starlike compatible sets, and starlike generated sets. Also, in this work, it is proved that if F is a maximal face of the unit ball containing inner points, then T(−F)=−T(F). We also show that if [x,y] is a non-trivial segment contained in the unit sphere such that T([x,y]) is convex, then T is affine on [x,y]. As a consequence, T is affine on every segment that is a maximal face. On the other hand, we introduce a new geometric property called property P, which states that every face of the unit ball is the intersection of all maximal faces containing it. This property has turned out to be, in a implicit way, a very useful tool to show that many Banach spaces enjoy the Mazur-Ulam property. Following this line, in this manuscript it is proved that every reflexive or separable Banach space with dimension greater than or equal to 2 can be equivalently renormed to fail property P.


Author(s):  
Richard Haydon

In a series of recent papers ((10), (9) and (11)) Rosenthal and Odell have given a number of characterizations of Banach spaces that contain subspaces isomorphic (that is, linearly homeomorphic) to the space l1 of absolutely summable series. The methods of (9) and (11) are applicable only in the case of separable Banach spaces and some of the results there were established only in this case. We demonstrate here, without the separability assumption, one of these characterizations:a Banach space B contains no subspace isomorphic to l1 if and only if every weak* compact convex subset of B* is the norm closed convex hull of its extreme points.


Author(s):  
KEVIN BEANLAND ◽  
RYAN M. CAUSEY

Abstract For 0 ≤ ξ ≤ ω1, we define the notion of ξ-weakly precompact and ξ-weakly compact sets in Banach spaces and prove that a set is ξ-weakly precompact if and only if its weak closure is ξ-weakly compact. We prove a quantified version of Grothendieck’s compactness principle and the characterisation of Schur spaces obtained in [7] and [9]. For 0 ≤ ξ ≤ ω1, we prove that a Banach space X has the ξ-Schur property if and only if every ξ-weakly compact set is contained in the closed, convex hull of a weakly null (equivalently, norm null) sequence. The ξ = 0 and ξ= ω1 cases of this theorem are the theorems of Grothendieck and [7], [9], respectively.


Author(s):  
Joram Lindenstrauss ◽  
David Preiss ◽  
Tiˇser Jaroslav

This chapter treats results on ε‎-Fréchet differentiability of Lipschitz functions in asymptotically smooth spaces. These results are highly exceptional in the sense that they prove almost Frechet differentiability in some situations when we know that the closed convex hull of all (even almost) Fréchet derivatives may be strictly smaller than the closed convex hull of the Gâteaux derivatives. The chapter first presents a simple proof of an almost differentiability result for Lipschitz functions in asymptotically uniformly smooth spaces before discussing the notion of asymptotic uniform smoothness. It then proves that in an asymptotically smooth Banach space X, any finite set of real-valued Lipschitz functions on X has, for every ε‎ > 0, a common point of ε‎-Fréchet differentiability.


1977 ◽  
Vol 29 (5) ◽  
pp. 963-970 ◽  
Author(s):  
Mark A. Smith

In a Banach space, the directional modulus of rotundity, δ (ϵ, z), measures the minimum depth at which the midpoints of all chords of the unit ball which are parallel to z and of length at least ϵ are buried beneath the surface. A Banach space is uniformly rotund in every direction (URED) if δ (ϵ, z) is positive for every positive ϵ and every nonzero element z. This concept of directionalized uniform rotundity was introduced by Garkavi [6] to characterize those Banach spaces in which every bounded subset has at most one Čebyšev center.


1983 ◽  
Vol 26 (2) ◽  
pp. 163-167 ◽  
Author(s):  
L. Drewnowski

Following Lotz, Peck and Porta [9], a continuous linear operator from one Banach space into another is called a semi-embedding if it is one-to-one and maps the closed unit ball of the domain onto a closed (hence complete) set. (Below we shall allow the codomain to be an F-space, i.e., a complete metrisable topological vector space.) One of the main results established in [9] is that if X is a compact scattered space, then every semi-embedding of C(X) into another Banach space is an isomorphism ([9], Main Theorem, (a)⇒(b)).


1999 ◽  
Vol 59 (3) ◽  
pp. 361-367 ◽  
Author(s):  
A. Jiménez-Melado

Roughly speaking, we show that a Banach space X has the fixed point property for nonexpansive mappings whenever X has the WORTH property and the unit sphere of X does not contain a triangle with sides of length larger than 2.


2018 ◽  
Vol 97 (2) ◽  
pp. 285-292 ◽  
Author(s):  
V. KADETS ◽  
O. ZAVARZINA

Extending recent results by Cascales et al. [‘Plasticity of the unit ball of a strictly convex Banach space’, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat.110(2) (2016), 723–727], we demonstrate that for every Banach space $X$ and every collection $Z_{i},i\in I$, of strictly convex Banach spaces, every nonexpansive bijection from the unit ball of $X$ to the unit ball of the sum of $Z_{i}$ by $\ell _{1}$ is an isometry.


2020 ◽  
Vol 1664 (1) ◽  
pp. 012038
Author(s):  
Saied A. Jhonny ◽  
Buthainah A. A. Ahmed

Abstract In this paper, we ⊥ B J C ϵ -orthogonality and explore ⊥ B J C ϵ -symmetricity such as a ⊥ B J C ϵ -left-symmetric ( ⊥ B J C ϵ -right-symmetric) of a vector x in a real Banach space (𝕏, ‖·‖𝕩) and study the relation between a ⊥ B J C ϵ -right-symmetric ( ⊥ B J C ϵ -left-symmetric) in ℐ(x). New results and proofs are include the notion of norm attainment set of a continuous linear functionals on a reflexive and strictly convex Banach space and using these results to characterize a smoothness of a vector in a unit sphere.


Author(s):  
Kazimierz Goebel

For any infinite dimensional Banach space there exists a lipschitzian retraction of the closed unit ball B onto the unit sphere S. Lipschitz constants for such retractions are, in general, only roughly estimated. The paper is illustrative. It contains remarks, illustrations and estimates concerning optimal retractions onto spherical caps for sequence spaces with the uniform norm.


Sign in / Sign up

Export Citation Format

Share Document