scholarly journals Remarks on retracting balls on spherical caps in \(c_{0}\), \(c\), \(l^{\infty }\) spaces

Author(s):  
Kazimierz Goebel

For any infinite dimensional Banach space there exists a lipschitzian retraction of the closed unit ball B onto the unit sphere S. Lipschitz constants for such retractions are, in general, only roughly estimated. The paper is illustrative. It contains remarks, illustrations and estimates concerning optimal retractions onto spherical caps for sequence spaces with the uniform norm.

2005 ◽  
Vol 72 (2) ◽  
pp. 299-315 ◽  
Author(s):  
D. Caponetti ◽  
A. Trombetta ◽  
G. Trombetta

In this paper we consider the Wośko problem of evaluating, in an infinite-dimensional Banach space X, the infimum of all k ≤ 1 for which there exists a k-ball contractive retraction of the unit ball onto its boundary. We prove that in some classical Banach spaces the best possible value 1 is attained. Moreover we give estimates of the lower H-measure of noncompactness of the retractions we construct.


2001 ◽  
Vol 33 (4) ◽  
pp. 443-453 ◽  
Author(s):  
DANIEL AZAGRA ◽  
MANUEL CEPEDELLO BOISO

Let X be an infinite-dimensional Banach space, and let A be a Cp Lipschitz bounded starlike body (for instance the unit ball of a smooth norm). We prove that:(1) the boundary ∂A is Cp Lipschitz contractible;(2) there is a Cp Lipschitz retraction from A onto ∂A;(3) there is a Cp Lipschitz map T : A → A with no approximate fixed points.


Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 150
Author(s):  
Andriy Zagorodnyuk ◽  
Anna Hihliuk

In the paper we establish some conditions under which a given sequence of polynomials on a Banach space X supports entire functions of unbounded type, and construct some counter examples. We show that if X is an infinite dimensional Banach space, then the set of entire functions of unbounded type can be represented as a union of infinite dimensional linear subspaces (without the origin). Moreover, we show that for some cases, the set of entire functions of unbounded type generated by a given sequence of polynomials contains an infinite dimensional algebra (without the origin). Some applications for symmetric analytic functions on Banach spaces are obtained.


Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2346
Author(s):  
Almudena Campos-Jiménez ◽  
Francisco Javier García-Pacheco

In this paper we provide new geometric invariants of surjective isometries between unit spheres of Banach spaces. Let X,Y be Banach spaces and let T:SX→SY be a surjective isometry. The most relevant geometric invariants under surjective isometries such as T are known to be the starlike sets, the maximal faces of the unit ball, and the antipodal points (in the finite-dimensional case). Here, new geometric invariants are found, such as almost flat sets, flat sets, starlike compatible sets, and starlike generated sets. Also, in this work, it is proved that if F is a maximal face of the unit ball containing inner points, then T(−F)=−T(F). We also show that if [x,y] is a non-trivial segment contained in the unit sphere such that T([x,y]) is convex, then T is affine on [x,y]. As a consequence, T is affine on every segment that is a maximal face. On the other hand, we introduce a new geometric property called property P, which states that every face of the unit ball is the intersection of all maximal faces containing it. This property has turned out to be, in a implicit way, a very useful tool to show that many Banach spaces enjoy the Mazur-Ulam property. Following this line, in this manuscript it is proved that every reflexive or separable Banach space with dimension greater than or equal to 2 can be equivalently renormed to fail property P.


1983 ◽  
Vol 26 (2) ◽  
pp. 163-167 ◽  
Author(s):  
L. Drewnowski

Following Lotz, Peck and Porta [9], a continuous linear operator from one Banach space into another is called a semi-embedding if it is one-to-one and maps the closed unit ball of the domain onto a closed (hence complete) set. (Below we shall allow the codomain to be an F-space, i.e., a complete metrisable topological vector space.) One of the main results established in [9] is that if X is a compact scattered space, then every semi-embedding of C(X) into another Banach space is an isomorphism ([9], Main Theorem, (a)⇒(b)).


Author(s):  
Douglas Mupasiri

AbstractWe give a characterization of complex extreme measurable selections for a suitable set-valued map. We use this result to obtain necessary and sufficient conditions for a function to be a complex extreme point of the closed unit ball of Lp (ω, Σ, ν X), where (ω, σ, ν) is any positive, complete measure space, X is a separable complex Banach space, and 0 < p < ∞.


Axioms ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 133
Author(s):  
Andriy Zagorodnyuk ◽  
Anna Hihliuk

In this paper we investigate analytic functions of unbounded type on a complex infinite dimensional Banach space X. The main question is: under which conditions is there an analytic function of unbounded type on X such that its Taylor polynomials are in prescribed subspaces of polynomials? We obtain some sufficient conditions for a function f to be of unbounded type and show that there are various subalgebras of polynomials that support analytic functions of unbounded type. In particular, some examples of symmetric analytic functions of unbounded type are constructed.


1988 ◽  
Vol 103 (3) ◽  
pp. 497-502
Author(s):  
Susumu Okada ◽  
Yoshiaki Okazaki

Let X be an infinite-dimensional Banach space. It is well-known that the space of X-valued, Pettis integrable functions is not always complete with respect to the topology of convergence in mean, that is, the uniform convergence of indefinite integrals (see [14]). The Archimedes integral introduced in [9] does not suffer from this defect. For the Archimedes integral, functions to be integrated are allowed to take values in a locally convex space Y larger than the space X while X accommodates the values of indefinite integrals. Moreover, there exists a locally convex space Y, into which X is continuously embedded, such that the space ℒ(μX, Y) of Y-valued, Archimedes integrable functions is identical to the completion of the space of X valued, simple functions with repect to the toplogy of convergence in mean, for each non-negative measure μ (see [9]).


2011 ◽  
Vol 53 (3) ◽  
pp. 443-449 ◽  
Author(s):  
ANTONÍN SLAVÍK

AbstractThis paper is inspired by a counter example of J. Kurzweil published in [5], whose intention was to demonstrate that a certain property of linear operators on finite-dimensional spaces need not be preserved in infinite dimension. We obtain a stronger result, which says that no infinite-dimensional Banach space can have the given property. Along the way, we will also derive an interesting proposition related to Dvoretzky's theorem.


1989 ◽  
Vol 32 (4) ◽  
pp. 450-458
Author(s):  
Takemitsu Kiyosawa

AbstractLet K be a non-trivial complete non-Archimedean valued field and let E be an infinite-dimensional Banach space over K. Some of the main results are:(1) K is spherically complete if and only if every weakly convergent sequence in l∞ is norm-convergent.(2) If the valuation of K is dense, then C0 is complemented in E if and only if C(E,c0) is n o t complemented in L(E,c0), where L(E,c0) is the space of all continuous linear operators from E to c0 and C(E,c0) is the subspace of L(E, c0) consisting of all compact linear operators.


Sign in / Sign up

Export Citation Format

Share Document