scholarly journals The speed of Muller's ratchet with background selection, and the degeneration of Y chromosomes

2001 ◽  
Vol 78 (2) ◽  
pp. 149-161 ◽  
Author(s):  
ISABEL GORDO ◽  
BRIAN CHARLESWORTH

The rate of accumulation of deleterious mutations by Muller's ratchet is investigated in large asexual haploid populations, for a range of parameters with potential biological relevance. The rate of this process is studied by considering a very simple model in which mutations can have two types of effect: either strongly deleterious or mildly deleterious. It is shown that the rate of accumulation of mildly deleterious mutations can be greatly increased by the presence of strongly deleterious mutations, and that this can be predicted from the associated reduction in effective population size (the background selection effect). We also examine the rate of the ratchet when there are two classes of mutation of similar but unequal effects on fitness. The accuracy of analytical approximations for the rate of this process is analysed. Its possible role in causing the degeneration of Y and neo-Y chromosomes is discussed in the light of our present knowledge of deleterious mutation rates and selection coefficients.

Genetics ◽  
2000 ◽  
Vol 154 (3) ◽  
pp. 1379-1387 ◽  
Author(s):  
Isabel Gordo ◽  
Brian Charlesworth

Abstract The accumulation of deleterious mutations due to the process known as Muller's ratchet can lead to the degeneration of nonrecombining populations. We present an analytical approximation for the rate at which this process is expected to occur in a haploid population. The approximation is based on a diffusion equation and is valid when N exp(−u/s) ⪢ 1, where N is the population size, u is the rate at which deleterious mutations occur, and s is the effect of each mutation on fitness. Simulation results are presented to show that the approximation estimates the rate of the process better than previous approximations for values of mutation rates and selection coefficients that are compatible with the biological data. Under certain conditions, the ratchet can turn at a biologically significant rate when the deterministic equilibrium number of individuals free of mutations is substantially >100. The relevance of this process for the degeneration of Y or neo-Y chromosomes is discussed.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Sankar Subramanian

Abstract Objective Domestication of wild animals results in a reduction in the effective population size, and this could affect the deleterious mutation load of domesticated breeds. Furthermore, artificial selection will also contribute to the accumulation of deleterious mutations due to the increased rate of inbreeding among these animals. The process of domestication, founder population size, and artificial selection differ between cattle breeds, which could lead to a variation in their deleterious mutation loads. We investigated this using mitochondrial genome data from 364 animals belonging to 18 cattle breeds of the world. Results Our analysis revealed more than a fivefold difference in the deleterious mutation load among cattle breeds. We also observed a negative correlation between the breed age and the proportion of deleterious amino acid-changing polymorphisms. This suggests a proportionally higher deleterious SNPs in young breeds compared to older breeds. Our results highlight the magnitude of difference in the deleterious mutations present in the mitochondrial genomes of various breeds. The results of this study could be useful in predicting the rate of incidence of genetic diseases in different breeds.


Genetics ◽  
2021 ◽  
Author(s):  
Takahiro Sakamoto ◽  
Hideki Innan

Abstract Muller’s ratchet is a process in which deleterious mutations are fixed irreversibly in the absence of recombination. The degeneration of the Y chromosome, and the gradual loss of its genes, can be explained by Muller’s ratchet. However, most theories consider single-copy genes, and may not be applicable to Y chromosomes, which have a number of duplicated genes in many species, which are probably undergoing concerted evolution by gene conversion. We developed a model of Muller’s ratchet to explore the evolution of the Y chromosome. The model assumes a non-recombining chromosome with both single-copy and duplicated genes. We used analytical and simulation approaches to obtain the rate of gene loss in this model, with special attention to the role of gene conversion. Homogenization by gene conversion makes both duplicated copies either mutated or intact. The former promotes the ratchet, and the latter retards, and we ask which of these counteracting forces dominates under which conditions. We found that the effect of gene conversion is complex, and depends upon the fitness effect of gene duplication. When duplication has no effect on fitness, gene conversion accelerates the ratchet of both single-copy and duplicated genes. If duplication has an additive fitness effect, the ratchet of single-copy genes is accelerated by gene duplication, regardless of the gene conversion rate, whereas gene conversion slows the degeneration of duplicated genes. Our results suggest that the evolution of the Y chromosome involves several parameters, including the fitness effect of gene duplication by increasing dosage and gene conversion rate.


1997 ◽  
Vol 70 (1) ◽  
pp. 63-73 ◽  
Author(s):  
BRIAN CHARLESWORTH ◽  
DEBORAH CHARLESWORTH

Theoretical arguments are presented which suggest that each advance of Muller's ratchet in a haploid asexual population causes the fixation of a deleterious mutation at a single locus. A similar process operates in a diploid, fully asexual population under a wide range of parameter values, with respect to fixation within one of the two haploid genomes. Fixations of deleterious mutations in asexual species can thus be greatly accelerated in comparison with a freely recombining genome, if the ratchet is operating. In a diploid with segregation of a single chromosome, but no crossing over within the chromosome, the advance of the ratchet can be decoupled from fixation if mutations are sufficiently close to recessivity. A new analytical approximation for the rate of advance of the ratchet is proposed. Simulation results are presented that validate the assertions about fixation. The simulations show that none of the analytical approximations for the rate of advance of the ratchet are satisfactory when population size is large. The relevance of these results for evolutionary processes such as Y chromosome degeneration is discussed.


2021 ◽  
Author(s):  
Sankar Subramanian

Abstract ObjectiveDomestication of wild animals results in a reduction in the effective population size and this could affect the deleterious mutation load of domesticated breeds. Furthermore, artificial selection will also contribute to accumulation deleterious mutations due to the increased rate of inbreeding among these animals. The process of domestication, founder population size, and artificial selection differ between cattle breeds, which could lead to a variation in their deleterious mutation loads. We investigated this using mitochondrial genome data from 252 animals belonging to 15 cattle breeds of the world. ResultsOur analysis revealed more than fivefold difference in the deleterious mutation load among cattle breeds. We also observed a negative correlation between the neutral heterozygosity and the ratio of amino acid changing diversity to silent diversity. This suggests a proportionally higher amino acid changing variants in breeds with low diversity. Our results highlight the magnitude of difference in the deleterious mutations present in the mitochondrial genomes of various breeds. The results of this study could be useful in predicting the rate of incidence of genetic diseases in different breeds.


1995 ◽  
Vol 350 (1333) ◽  
pp. 221-227 ◽  

With the exception of a small region, heteromorphic sex chromosomes of mammals do not undergo recombination in male meiosis. As a result, the majority of the Y chromosome is clonally transmitted through paternal lineages. Numerous phenomena, including the Hill-Robertson effect, Muller’s ratchet, genetic hitch-hiking, and male-driven molecular evolution, are associated with the special transmission properties of the Y chromosome, and can potentially explain the tempo and pattern of gene evolution on the mammalian Y. We explore these phenomena in light of comparative data from the Y-linked sex-determining locus, Sry . Sry exhibits rapid amino acid divergence between species and little to no variation within species. We find no evidence for directional selection acting on this locus. The pattern of evolution between species is consistent with the Hill-Robertson effect and Muller’s ratchet. Lack of variation in Sry within species may reflect genetic hitch-hiking, however, we cannot exclude the confounding effects of small effective population size of Y chromosomes. We find no support for male-driven molecular evolution for Sry in Old World mice and rats. However, a more appropriate test of this hypothesis would be to compare the evolution of Sry to the X-linked Sox3 gene in these same species. Clearly, more comparative studies of Sry and other Y-linked loci are needed to characterize the effects of Y chromosome transmission on the evolution of Y-linked sequences.


Genetics ◽  
1999 ◽  
Vol 153 (1) ◽  
pp. 475-483 ◽  
Author(s):  
Snæbjörn Pálsson ◽  
Pekka Pamilo

Abstract The effects of recessive, deleterious mutations on genetic variation at linked neutral loci can be heterozygosity-decreasing because of reduced effective population sizes or heterozygosity-increasing because of associative overdominance. Here we examine the balance between these effects by simulating individual diploid genotypes in small panmictic populations. The haploid genome consists of one linkage group with 1000 loci that can have deleterious mutations and a neutral marker. Combinations of the following parameters are studied: gametic mutation rate to harmful alleles (U), population size (N), recombination rate (r), selection coefficient (s), and dominance (h). Tight linkage (r ≤ 10–4) gives significant associative effects, leading either to strong reduction of heterozygosity when the product Nhs is large or to a clear increase when the product Nhs is small, the boundary between these effects being 1 < Nhs < 4 in our simulations. Associative overdominance can lead to heterozygosities that are larger than predicted by the background selection models and even larger than the neutral expectation.


Genetics ◽  
1987 ◽  
Vol 116 (1) ◽  
pp. 161-167
Author(s):  
William R Rice

ABSTRACT A new model for the evolution of reduced genetic activity of the Y sex chromosome is described. The model is based on the process of genetic hitchhiking. It is shown that the Y chromosome can gradually lose its genetic activity due to the fixation of deleterious mutations that are linked with other beneficial genes. Fixation of deleterious Y-linked mutations generates locus-specific selection for dosage tolerance and/or compensation. The hitchhiking effect is most pronounced when operating in combination with an alternative model, Muller's ratchet. It is shown, however, that the genetic hitchhiking mechanism can operate under conditions where Muller's ratchet is ineffective.


Sign in / Sign up

Export Citation Format

Share Document