Muller’s ratchet of the Y chromosome with gene conversion

Genetics ◽  
2021 ◽  
Author(s):  
Takahiro Sakamoto ◽  
Hideki Innan

Abstract Muller’s ratchet is a process in which deleterious mutations are fixed irreversibly in the absence of recombination. The degeneration of the Y chromosome, and the gradual loss of its genes, can be explained by Muller’s ratchet. However, most theories consider single-copy genes, and may not be applicable to Y chromosomes, which have a number of duplicated genes in many species, which are probably undergoing concerted evolution by gene conversion. We developed a model of Muller’s ratchet to explore the evolution of the Y chromosome. The model assumes a non-recombining chromosome with both single-copy and duplicated genes. We used analytical and simulation approaches to obtain the rate of gene loss in this model, with special attention to the role of gene conversion. Homogenization by gene conversion makes both duplicated copies either mutated or intact. The former promotes the ratchet, and the latter retards, and we ask which of these counteracting forces dominates under which conditions. We found that the effect of gene conversion is complex, and depends upon the fitness effect of gene duplication. When duplication has no effect on fitness, gene conversion accelerates the ratchet of both single-copy and duplicated genes. If duplication has an additive fitness effect, the ratchet of single-copy genes is accelerated by gene duplication, regardless of the gene conversion rate, whereas gene conversion slows the degeneration of duplicated genes. Our results suggest that the evolution of the Y chromosome involves several parameters, including the fitness effect of gene duplication by increasing dosage and gene conversion rate.

2004 ◽  
Vol 16 (5) ◽  
pp. 527 ◽  
Author(s):  
Jennifer A. Marshall Graves

The human Y chromosome is running out of time. In the last 300 million years, it has lost 1393 of its original 1438 genes, and at this rate it will lose the last 45 in a mere 10 million years. But there has been a proposal that perhaps rescue is at hand in the form of recently discovered gene conversion within palindromes. However, I argue here that although conversion will increase the frequency of variation of the Y (particularly amplification) between Y chromosomes in a population, it will not lead to a drive towards a more functional Y. The forces of evolution have made the Y a genetically isolated, non-recombining entity, vulnerable to genetic drift and selection for favourable new variants sharing the Y with damaging mutations. Perhaps it will even speed up the decline of the Y chromosome and the onset of a new round of sex-chromosome differentiation. The struggle to preserve males may perhaps lead to hominid speciation.


2017 ◽  
Author(s):  
Margaret L. I. Hart ◽  
Ban L. Vu ◽  
Quinten Bolden ◽  
Keith T. Chen ◽  
Casey L. Oakes ◽  
...  

AbstractGene duplication creates a second copy of a gene either in tandem to the ancestral locus or dispersed to another chromosomal location. When the ancestral copy of a dispersed duplicate is lost from the genome, it creates the appearance that the gene was “relocated” from the ancestral locus to the derived location. Gene relocations may be as common as canonical dispersed duplications in which both the ancestral and derived copies are retained. Relocated genes appear to be under more selective constraints than the derived copies of canonical duplications, and they are possibly as conserved as single-copy non-relocated genes. To test this hypothesis, we combined comparative genomics, population genetics, gene expression, and functional analyses to assess the selection pressures acting on relocated, duplicated, and non-relocated single-copy genes in Drosophila genomes. We find that relocated genes evolve faster than single-copy non-relocated genes, and there is no evidence that this faster evolution is driven by positive selection. In addition, relocated genes are less essential for viability and male fertility than single-copy non-relocated genes, suggesting that relocated genes evolve fast because of relaxed selective constraints. However, relocated genes evolve slower than the derived copies of canonical dispersed duplicated genes. We therefore conclude that relocated genes are under more selective constraints than canonical duplicates, but are not as conserved as single-copy non-relocated genes.


Genetics ◽  
2010 ◽  
Vol 186 (1) ◽  
pp. 277-286 ◽  
Author(s):  
Tim Connallon ◽  
Andrew G. Clark

1995 ◽  
Vol 350 (1333) ◽  
pp. 221-227 ◽  

With the exception of a small region, heteromorphic sex chromosomes of mammals do not undergo recombination in male meiosis. As a result, the majority of the Y chromosome is clonally transmitted through paternal lineages. Numerous phenomena, including the Hill-Robertson effect, Muller’s ratchet, genetic hitch-hiking, and male-driven molecular evolution, are associated with the special transmission properties of the Y chromosome, and can potentially explain the tempo and pattern of gene evolution on the mammalian Y. We explore these phenomena in light of comparative data from the Y-linked sex-determining locus, Sry . Sry exhibits rapid amino acid divergence between species and little to no variation within species. We find no evidence for directional selection acting on this locus. The pattern of evolution between species is consistent with the Hill-Robertson effect and Muller’s ratchet. Lack of variation in Sry within species may reflect genetic hitch-hiking, however, we cannot exclude the confounding effects of small effective population size of Y chromosomes. We find no support for male-driven molecular evolution for Sry in Old World mice and rats. However, a more appropriate test of this hypothesis would be to compare the evolution of Sry to the X-linked Sox3 gene in these same species. Clearly, more comparative studies of Sry and other Y-linked loci are needed to characterize the effects of Y chromosome transmission on the evolution of Y-linked sequences.


2020 ◽  
Vol 37 (8) ◽  
pp. 2322-2331
Author(s):  
Carl J Dyson ◽  
Michael A D Goodisman

Abstract Gene duplication serves a critical role in evolutionary adaptation by providing genetic raw material to the genome. The evolution of duplicated genes may be influenced by epigenetic processes such as DNA methylation, which affects gene function in some taxa. However, the manner in which DNA methylation affects duplicated genes is not well understood. We studied duplicated genes in the honeybee Apis mellifera, an insect with a highly sophisticated social structure, to investigate whether DNA methylation was associated with gene duplication and genic evolution. We found that levels of gene body methylation were significantly lower in duplicate genes than in single-copy genes, implicating a possible role of DNA methylation in postduplication gene maintenance. Additionally, we discovered associations of gene body methylation with the location, length, and time since divergence of paralogous genes. We also found that divergence in DNA methylation was associated with divergence in gene expression in paralogs, although the relationship was not completely consistent with a direct link between DNA methylation and gene expression. Overall, our results provide further insight into genic methylation and how its association with duplicate genes might facilitate evolutionary processes and adaptation.


Genetics ◽  
1987 ◽  
Vol 116 (1) ◽  
pp. 161-167
Author(s):  
William R Rice

ABSTRACT A new model for the evolution of reduced genetic activity of the Y sex chromosome is described. The model is based on the process of genetic hitchhiking. It is shown that the Y chromosome can gradually lose its genetic activity due to the fixation of deleterious mutations that are linked with other beneficial genes. Fixation of deleterious Y-linked mutations generates locus-specific selection for dosage tolerance and/or compensation. The hitchhiking effect is most pronounced when operating in combination with an alternative model, Muller's ratchet. It is shown, however, that the genetic hitchhiking mechanism can operate under conditions where Muller's ratchet is ineffective.


2014 ◽  
Author(s):  
Benjamin M Skinner ◽  
Carole A Sargent ◽  
Carol Churcher ◽  
Toby Hunt ◽  
Javier Herrero ◽  
...  

We have generated an improved assembly and gene annotation of the pig X chromosome, and a first draft assembly of the pig Y chromosome, by sequencing BAC and fosmid clones, and incorporating information from optical mapping and fibre-FISH. The X chromosome carries 1,014 annotated genes, 689 of which are protein-coding. Gene order closely matches that found in Primates (including humans) and Carnivores (including cats and dogs), which is inferred to be ancestral. Nevertheless, several protein-coding genes present on the human X chromosome were absent from the pig (e.g. the cancer/testis antigen family) or inactive (e.g. AWAT1), and 38 pig-specific X-chromosomal genes were annotated, 22 of which were olfactory receptors. The pig Y chromosome assembly focussed on two clusters of male-specific low-copy number genes, separated by an ampliconic region including the HSFY gene family, which together make up most of the short arm. Both clusters contain palindromes with high sequence identity, presumably maintained by gene conversion. The long arm of the chromosome is almost entirely repetitive, containing previously characterised sequences. Many of the ancestral X-related genes previously reported in at least one mammalian Y chromosome are represented either as active genes or partial sequences. This sequencing project has allowed us to identify genes - both single copy and amplified - on the pig Y, to compare the pig X and Y chromosomes for homologous sequences, and thereby to reveal mechanisms underlying pig X and Y chromosome evolution.


Genome ◽  
2002 ◽  
Vol 45 (2) ◽  
pp. 413-420 ◽  
Author(s):  
Shunsuke Nakao ◽  
Sachihiro Matsunaga ◽  
Atsushi Sakai ◽  
Tsuneyoshi Kuroiwa ◽  
Shigeyuki Kawano

Silene latifolia is a dioecious plant and has heteromorphic sex chromosomes: the X and Y chromosomes. The Y chromosome is the largest, and its genetic control seems to be most strict among dioecious plants. To identify the putative sex-determination elements on the Y chromosome, random amplified polymorphic DNA (RAPD) analysis was used to screen for Y chromosome specific DNA fragments, and 31 clones were successfully produced. Genomic Southern hybridization and FISH (fluorescence in situ hybridization) analyses revealed that one of the clones, #2-2, is a Y chromosome specific fragment that has a single copy on the Y chromosome. Sequence tagged site (STS)-PCR analysis also succeeded in amplifying one fragment in males and no fragments in females. Cloning and sequencing of the #2-2 flanking region using inverse PCR revealed an open reading frame (ORF) corresponding to 285 amino acids in length (ORF285), but no expression of the ORF285 gene was identified. ORF285 may be a clue to the origin of dioecy.Key words: Y chromosome, RAPD, STS, FISH, Melandrium album.


Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1815
Author(s):  
João Ricchio ◽  
Fabiana Uno ◽  
A. Bernardo Carvalho

Y chromosomes play important roles in sex determination and male fertility. In several groups (e.g., mammals) there is strong evidence that they evolved through gene loss from a common X-Y ancestor, but in Drosophila the acquisition of new genes plays a major role. This conclusion came mostly from studies in two species. Here we report the identification of the 22 Y-linked genes in D. willistoni. They all fit the previously observed pattern of autosomal or X-linked testis-specific genes that duplicated to the Y. The ratio of gene gains to gene losses is ~25 in D. willistoni, confirming the prominent role of gene gains in the evolution of Drosophila Y chromosomes. We also found four large segmental duplications (ranging from 62 kb to 303 kb) from autosomal regions to the Y, containing ~58 genes. All but four of these duplicated genes became pseudogenes in the Y or disappeared. In the GK20609 gene the Y-linked copy remained functional, whereas its original autosomal copy degenerated, demonstrating how autosomal genes are transferred to the Y chromosome. Since the segmental duplication that carried GK20609 contained six other testis-specific genes, it seems that chance plays a significant role in the acquisition of new genes by the Drosophila Y chromosome.


Sign in / Sign up

Export Citation Format

Share Document