scholarly journals Harmful Mutation Load in the Mitochondrial Genomes of Cattle Breeds 

Author(s):  
Sankar Subramanian

Abstract ObjectiveDomestication of wild animals results in a reduction in the effective population size and this could affect the deleterious mutation load of domesticated breeds. Furthermore, artificial selection will also contribute to accumulation deleterious mutations due to the increased rate of inbreeding among these animals. The process of domestication, founder population size, and artificial selection differ between cattle breeds, which could lead to a variation in their deleterious mutation loads. We investigated this using mitochondrial genome data from 252 animals belonging to 15 cattle breeds of the world. ResultsOur analysis revealed more than fivefold difference in the deleterious mutation load among cattle breeds. We also observed a negative correlation between the neutral heterozygosity and the ratio of amino acid changing diversity to silent diversity. This suggests a proportionally higher amino acid changing variants in breeds with low diversity. Our results highlight the magnitude of difference in the deleterious mutations present in the mitochondrial genomes of various breeds. The results of this study could be useful in predicting the rate of incidence of genetic diseases in different breeds.

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Sankar Subramanian

Abstract Objective Domestication of wild animals results in a reduction in the effective population size, and this could affect the deleterious mutation load of domesticated breeds. Furthermore, artificial selection will also contribute to the accumulation of deleterious mutations due to the increased rate of inbreeding among these animals. The process of domestication, founder population size, and artificial selection differ between cattle breeds, which could lead to a variation in their deleterious mutation loads. We investigated this using mitochondrial genome data from 364 animals belonging to 18 cattle breeds of the world. Results Our analysis revealed more than a fivefold difference in the deleterious mutation load among cattle breeds. We also observed a negative correlation between the breed age and the proportion of deleterious amino acid-changing polymorphisms. This suggests a proportionally higher deleterious SNPs in young breeds compared to older breeds. Our results highlight the magnitude of difference in the deleterious mutations present in the mitochondrial genomes of various breeds. The results of this study could be useful in predicting the rate of incidence of genetic diseases in different breeds.


2021 ◽  
Author(s):  
Sankar Subramanian

Abstract Domestication of wild animals results in a reduction in the effective population size and this could affect the deleterious mutation load of domesticated breeds. Furthermore, artificial selection will also contribute to accumulation deleterious mutations due to the increased rate of inbreeding among these animals. The process of domestication, founder population size, and artificial selection differ between cattle breeds, which could lead to a variation in their deleterious mutation loads. We investigated this using the whole genome data from 432 animals belonging to 54 cattle breeds of the world. Our analysis revealed a negative correlation between the genomic heterozygosity and the ratio of amino acid changing diversity to silent diversity. This suggests a proportionally higher amino acid changing Single Nucleotide variants (SNVs) in breeds with low diversity. Our results also showed that breeds with low diversity had more high-frequency (DAF > 0.51) deleterious SNVs than those with high diversity. A reverse trend was observed for the low-frequency (DAF ≤ 0.51) deleterious SNVs. Overall, taurine cattle breeds had more high-frequency deleterious SNVs than indicine (or taurine-indicine hybrid) breeds. However, within taurine breeds European or Northeast Asian taurines had more high-frequency deleterious SNVs than East Asian or African taurine breeds. Similarly, within indicine breeds South Asian indicines had more high-frequency deleterious SNVs than East Asian indicine breeds. All the above observed patterns were reversed for low frequency deleterious SNVs. Some of the variation in the deleterious mutation load observed between different breeds could be attributed to the population sizes of the wild progenitors before domestication. However, the variations observed withing taurine and within indicine breeds could be due to the difference in the extent of inbreeding, strength of artificial selection and/or founding population size. The findings of this study imply that the rate of incidence of genetic diseases might vary between cattle breeds.


2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Sankar Subramanian

AbstractThe domestication of wild animals has resulted in a reduction in effective population sizes, which can affect the deleterious mutation load of domesticated breeds. In addition, artificial selection contributes to the accumulation of deleterious mutations because of an increased rate of inbreeding among domesticated animals. Since founder population sizes and artificial selection differ between cattle breeds, their deleterious mutation load can vary. We investigated this question by using whole-genome data from 432 animals belonging to 54 worldwide cattle breeds. Our analysis revealed a negative correlation between genomic heterozygosity and nonsynonymous-to-silent diversity ratio, which suggests a higher proportion of single nucleotide variants (SNVs) affecting proteins in low-diversity breeds. Our results also showed that low-diversity breeds had a larger number of high-frequency (derived allele frequency (DAF) > 0.51) deleterious SNVs than high-diversity breeds. An opposite trend was observed for the low-frequency (DAF ≤ 0.51) deleterious SNVs. Overall, the number of high-frequency deleterious SNVs was larger in the genomes of taurine cattle breeds than of indicine breeds, whereas the number of low-frequency deleterious SNVs was larger in the genomes of indicine cattle than in those of taurine cattle. Furthermore, we observed significant variation in the counts of deleterious SNVs within taurine breeds. The variations in deleterious mutation load between taurine and indicine breeds could be attributed to the population sizes of the wild progenitors before domestication, whereas the variations observed within taurine breeds could be due to differences in inbreeding level, strength of artificial selection, and/or founding population size. Our findings imply that the incidence of genetic diseases can vary between cattle breeds.


1999 ◽  
Vol 74 (1) ◽  
pp. 31-42 ◽  
Author(s):  
J. RONFORT

Single-locus equilibrium frequencies of a partially recessive deleterious mutation under the mutation–selection balance model are derived for partially selfing autotetraploid populations. Assuming multiplicative fitness interactions among loci, approximate solutions for the mean fitness and inbreeding depression values are also derived for the multiple locus case and compared with expectations for the diploid model. As in diploids, purging of deleterious mutations through consanguineous matings occurs in autotetraploid populations, i.e. the equilibrium mutation load is a decreasing function of the selfing rate. However, the variation of inbreeding depression with the selfing rate depends strongly on the dominance coefficients associated with the three heterozygous genotypes. Inbreeding depression can either increase or decrease with the selfing rate, and does not always vary monotonically. Expected issues for the evolution of the selfing rate consequently differ depending on the dominance coefficients. In some cases, expectations for the evolution of the selfing rate resemble expectations in diploids; but particular sets of dominance coefficients can be found that lead to either complete selfing or intermediate selfing rates as unique evolutionary stable state.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0246497
Author(s):  
Vandana Manomohan ◽  
Ramasamy Saravanan ◽  
Rudolf Pichler ◽  
Nagarajan Murali ◽  
Karuppusamy Sivakumar ◽  
...  

The present study is the first comprehensive report on diversity, population structure, genetic admixture and mitochondrial DNA variation in South Indian draught type zebu cattle. The diversity of South Indian cattle was moderately high. A significantly strong negative correlation coefficient of -0.674 (P<0.05) was observed between the effective population size of different breeds and their estimated FIS. The genetic structure analysis revealed the distinctness of Kangayam, Vechur and Punganur cattle from the rest of the zebu breeds. The results showed the influence of Hallikar breed in the development of most Mysore type cattle breeds of South India with the exception of Kangayam. Bayesian clustering analysis was performed to assess the taurine admixture in South Indian zebu cattle using purebred Jersey and Holstein-Friesian as reference genotypes. Relatively high levels of taurine admixture (>6.25%) was observed in Punganur, Vechur, Umblachery and Pulikulam cattle breeds. Two major maternal haplogroups, I1 and I2, typical of zebu cattle were observed, with the former being predominant than the later. The pairwise differences among the I2 haplotypes of South Indian cattle were relatively higher than West Indian (Indus valley site) zebu cattle. The results indicated the need for additional sampling and comprehensive analysis of mtDNA control region variations to unravel the probable location of origin and domestication of I2 zebu lineage. The present study also revealed major concerns on South Indian zebu cattle (i) risk of endangerment due to small effective population size and high rate of inbreeding (ii) lack of sufficient purebred zebu bulls for breeding and (iii) increasing level of taurine admixture in zebu cattle. Availability of purebred semen for artificial insemination, incorporation of genomic/molecular information to identify purebred animals and increased awareness among farmers will help to maintain breed purity, conserve and improve these important draught cattle germplasms of South India.


2005 ◽  
Vol 86 (1) ◽  
pp. 41-51 ◽  
Author(s):  
SYLVAIN GLÉMIN

The fate of lethal alleles in populations is of interest in evolutionary and conservation biology for several reasons. For instance, lethals may contribute substantially to inbreeding depression. The frequency of lethal alleles depends on population size, but it is not clear how it is affected by population structure. By analysing the case of the infinite island model by numerical approaches and analytical approximations it is shown that, like population size, population structure affects the fate of lethal alleles if dominance levels are low. Inbreeding depression caused by such alleles is also affected by the population structure, whereas the mutation load is only weakly affected. Heterosis also depends on population structure, but it always remains low, of the order of the mutation rate or less. These patterns are compared with those caused by mildly deleterious mutations to give a general picture of the effect of population structure on inbreeding depression, heterosis, and the mutation load.


2000 ◽  
Vol 75 (1) ◽  
pp. 75-81 ◽  
Author(s):  
THOMAS BATAILLON ◽  
MARK KIRKPATRICK

We studied the effects of population size on the inbreeding depression and genetic load caused by deleterious mutations at a single locus. Analysis shows how the inbreeding depression decreases as population size becomes smaller and/or the rate of inbreeding increases. This pattern contrasts with that for the load, which increases as population size becomes smaller but decreases as inbreeding rate goes up. The depression and load both approach asymptotic limits when the population size becomes very large or very small. Numerical results show that the transition between the small and the large population regimes is quite rapid, and occurs largely over a range of population sizes that vary by a factor of 10. The effects of drift on inbreeding depression may bias some estimates of the genomic rate of deleterious mutation. These effects could also be important in the evolution of breeding systems in hermaphroditic organisms and in the conservation of endangered populations.


1961 ◽  
Vol 2 (2) ◽  
pp. 189-194 ◽  
Author(s):  
Alan Robertson

In a population under artificial selection, the effective population size may be less than the actual number of parents selected because there will be variation between families in the character under selection and consequently in the probability of selection. Expressions are developed for the magnitude of the effect, which will be greater the more intense the selection and the higher the heritability of the selected character. The inbreeding due to outstanding individuals may rise for several generations after their use.


Sign in / Sign up

Export Citation Format

Share Document