Geological Survey of Greenland. Tectonic Geological Map of Greenland, Scale 1:2,500,000. Compiled by A. Escher with assistance from N. Henriksen (East Greenland), P. R. Dawes (North Greenland) and A. Weidick (submarine contours and inland ice). Copenhagen, 1970. Price 22,00 Danish Kroner.

1971 ◽  
Vol 108 (1) ◽  
pp. 76-77
Author(s):  
W.B.H.
1988 ◽  
Vol 137 ◽  
pp. 118-118
Author(s):  
T.P Fletcher ◽  
A.K Higgins ◽  
J.S Peel

The first record of Middle Cambrian faunas of 'Atlantic' affinity from the Franklinian basin sequence of North Greenland was made by Poulsen (1969) who noted that previously described Greenland faunas were of 'Pacific' type. Field work by the Geological Survey of Greenland during the last decade has established that 'Atlantic' faunas are widespread in more outer shelfsequences along the northern coast of North Greenland while the 'Pacific' faunas occur within inner shelfsequences more to the south, near the margin of the Inland Ice. North Greenland preserves both faunas in dose geographical juxtaposition in only slightly tectonised geological settings. Thus, alatest Middle Cambrian trilobite fauna described by Robison (in press) from the Holm Dal Formation in an area some 40 km south of the presently discussed locality (and more inner shelf) includes a mixture of polymeroids characteristic of the Cedaria Zone of North America and agnostoids characteristic of the Lejopyge laevigata Zone of the Swedish standard zonation.


1991 ◽  
Vol 152 ◽  
pp. 30-31
Author(s):  
J.C Escher

The publication of the 1:500 000 Skjoldungen map sheet (Escher, 1990; Fig. 1) marks the completion of the Geological Survey of Greenland's (GGU's) reconnaissance mapping activities in South-East Greenland. A descriptive text to the map is under preparation. All of South-East Greenland between Kap Farvel (59° 00´N) and Mesters Vig (72° 00´N) is now covered by sheets of the 1:500 000 geological map series of Greenland. Five sheets in the series (nos 5,6,9, 10 and 11) remain to be published (Fig. 1); the Thule map sheet (sheet 5) will be printed in the course of 1991, and sheet 10 is under compilation. The presentation of the Skjoldungen map is somewhat different from that of the other 1:500 000 maps inthe series. In addition to traditional lithological information, an effort has been made to show the tectonic/metamorphic development of the region during the Archaean and Proterozoic.


1977 ◽  
Vol 85 ◽  
pp. 127-129
Author(s):  
A Weidick

Twenty-two radiocarbon age determinations of shell samples (18), wood (3) and gyttja (1) from North and East Greenland are summarised below. All the material was collected during GGU field work. The samples have been dated at the Geological Survey of Canada, Ottawa (marked GSC); Isotopes Inc., Westwood, New Jersey, USA (marked I) and at the Carbon-14 Dating Laboratory of the Geological Survey of Denmark and the National Museum, Copenhagen (marked K). The samples in East Greenland are located by coordinates taken from the Danish Geodetic Institute 1:250000 map series; in North Greenland from the U.S.A.F. World AeronauticaI Chart 1: 1000000, 5th edition.


1966 ◽  
Vol 11 ◽  
pp. 54-57
Author(s):  
D Bridgwater

As a first stage in planning a regional mapping programme on the south-east coast of Greenland from Scoresby Sund to Kap Farvel, the available material from previous expeditions has been examined and a provisional geological map is being compiled. A programme of isotopic age determination has been started in collaboration with F. J. Fitch (London University) and J. A. Miller (Cambridge University) in order to help localise areas in which to concentrate future detailed geological mapping. The Geological Survey of Greenland will be very pleased to receive information gathered on recent expeditions to this coast which may be of help in planning and which could prevent a senseless dupliaation of effort.


1994 ◽  
Vol 160 ◽  
pp. 47-51
Author(s):  
N Henriksen

The Geological Survey of Greenland (GGU) initiated in 1964 a 1:500000 mapping programme to produce a general overview of the onshore geology of all the ice-free areas of Greenland. So far 10 of a total of 14 planned map sheets have been published, and one additional sheet for which field work has been completed is under compilation. Most of Greenland is therefore now covered by map sheets of this series and only three areas remain to be covered: in North-West Greenland (sheet 6), in eastern North Greenland (sheet 9) and in East Greenland (sheet 11). Eastern North Greenland (map sheet no. 9; Fig. 1) is the target of the present project, with planned field work from 1993–1995. The first season (1993) was used for logistical preparation and geological reconnaissance in advance of the more intensive field work in the two following seasons (1994–95).


1982 ◽  
Vol 110 ◽  
pp. 9-14
Author(s):  
S Funder

Thirty-two radiocarbon age determinations of bivalve shelIs (30), gyttja (1) and peat (1) are summarised below. All but two of the samples were collected during the GGU geological expedition to the Peary Land region. Two samples comprise contemporary shelIs from north and north-east Greenland, and were collected earlier. The samples have been dated at the Carbon-14 Dating Laboratory of the Geological Survey of Denmark and the National Museum, Copenhagen (samples marked K, by courtesy of the Geological Survey of Denmark), the C-14 Laboratory at the Department of Quatemary Geology, University of Lund, Sweden (samples marked Lu, by courtesy of the laboratory and the Department of Quatemary Geology, University of Lund), and the Harwell Carbon 14/Tritium Laboratory, AERE, England (samples marked HAR).


1971 ◽  
Vol 37 ◽  
pp. 5-18
Author(s):  
N Henriksen ◽  
A.K Higgins

The Geological Survey of Greenland (GGU) carried out in 1970 the third summer of mapping in the crystalline complex of the Scoresby Sund region. The region mapped was the continuation southwards of that mapped the previous two summers in the inner fjord zone. The main geological divisions encountered correspond generally to those aIready known and described briefly by Henriksen & Higgins (1969, 1970). The 1970 mapping of the crystalline complex was a team project in which eight geologists participated. Each geologist mapped about 500-600 km2 in a field season of about six weeks. While excellent exposures facilitated the work extensive use of helicopters was necessary to cover the region in the time available and some parts, can only be considered as mapped to a reconnaissance standard. Topographical maps at a 1:50 000 scale, enlarged from 1:200 000 originals, were used for compilation of geological results and extensive use was made of oblique and vertical aerial photographs. The geologists participating during 1970 were: B. Chadwick, Exeter; J. D. Friderichsen, Copenhagen; N. Henriksen, Copenhagen; A. K. Higgins, Copenhagen; P. Homewood, Lausanne; L. Jemelin, Lausanne; H. Rutishauser, Bern and K. Sørensen, Aarhus. The areas mapped by each geologist are shown on the key of the geological map (map 1). This report is based on information supplied by all the geologists and many of the views presented originated from other members of the mapping team. However, the writers are responsibIe for the interpretations given in this paper which do not necessarily coincide exactly with those of their colleagues. In due course many of the geologists will present detailed accounts of their individual areas and GGU plans to publish 1:100 000 map sheets of the region.


1978 ◽  
Vol 90 ◽  
pp. 119-124
Author(s):  
A Weidick

Fourty-two radiocarbon age determinations of shell samples (27), wood (2) and gyttja (13) from North-West, North, East, and South Greenland are summarised below. All the material was collected during GGU field work in recent years. The samples have been dated by the Geological Survey of Canada, Ottawa (marked GSC), Isotopes Inc., Westwood, New Jersey, USA (marked I) and the Carbon-14 Dating Laboratory of the Geological Survey of Denmark and the National Museum, Copenhagen (marked K). The samples in North-West, South and East Greenland are located by the coordinates from the Danish Geodetic Institute maps; in North Greenland coordinates are from the U.S.A.F. World Aeronautical Chart 1:1000000, 5th edition.


Author(s):  
Niels Henriksen ◽  
A.K. Higgins ◽  
Feiko Kalsbeek ◽  
T. Christopher R. Pulvertaft

NOTE: This monograph was published in a former series of GEUS Bulletin. Please use the original series name when citing this monograph, for example: Henriksen, N., Higgins, A., Kalsbeek, F., & Pulvertaft, T. C. R. (2000). Greenland from Archaean to Quaternary. Descriptive text to the Geological map of Greenland, 1:2 500 000. Geology of Greenland Survey Bulletin, 185, 2-93. https://doi.org/10.34194/ggub.v185.5197 _______________ The geological development of Greenland spans a period of nearly 4 Ga, from the earliest Archaean to the Quaternary. Greenland is the largest island in the world with a total area of 2 166 000 km2, but only c. 410 000 km2 are exposed bedrock, the remaining part being covered by an inland ice cap reaching over 3 km in thickness. The adjacent offshore areas underlain by continental crust have an area of c. 825 000 km2. Greenland is dominated by crystalline rocks of the Precambrian shield, which formed during a succession of Archaean and early Proterozoic orogenic events and which stabilised as a part of the Laurentian shield about 1600 Ma ago. The shield area can be divided into three distinct types of basement provinces: (1) Archaean rocks (3100-2600 Ma old, with local older units) almost unaffected by Proterozoic or later orogenic activity; (2) Archaean terraines reworked during the early Proterozoic around 1850 Ma ago; and (3) terraines mainly composed of juvenile early Proterozoic rocks (2000-1750 Ma old). Subsequent geological developments mainly took place along the margins of the shield. During the later Proterozoic and throughout the Phanerozoic major sedimentary basins formed, notably in North and North-East Greenland, and in places accumulated sedimentary successions which reached 10-15 km in thickness. Palaeozoic orogenic activity affected parts of these successions in the Ellesmerian fold belt of North Greenland and the East Greenland Caledonides; the latter also incorporates reworked Precambrian crystalline basement complexes. Late Palaeozoic and Mesozoic sedimentary basins developed along the continent-ocean margins in North, East and West Greenland and are now preserved both onshore and offshore. Their development was closely related to continental break-up with formation of rift basins. Initial rifting in East Greenland in latest Devonian to earliest Carboniferous time and succeeding phases culminated with the opening of the North Atlantic in the late Paleocene. Sea-floor spreading was accompanied by extrusion of Tertiary plateau basalts in both central West and central and southern East Greenland. During the Quaternary Greenland was almost completely covered by ice sheets, and the present Inland Ice is a relic of the Pleistocene ice ages. Vast amounts of glacially eroded detritus were deposited on the continental shelves offshore Greenland. Mineral exploitation in Greenland has so far mainly been limited to one cryolite mine, two lead-zinc deposits and one coal deposit. Current prospecting activities in Greenland are concentrated on the gold, diamond and lead-zinc potential. The hydrocarbon potential is confined to the major Phanerozoic sedimentary basins, notably the large basins offshore East and West Greenland. While proven reserves of oil or gas have yet to be found, geophysical data combined with extrapolations from onshore studies have revealed a considerable potential for offshore oil and gas. The description of the map has been prepared with the needs of the professional geologist in mind; it requires a knowledge of geological principles but not previous knowledge of Greenland geology. Throughout the text reference is made to the key numbers in the map legend indicated in square brackets [ ] representing geological units (see Legend explanation, p. 79), while a Place names register (p. 83) and an Index (p. 87) include place names, geological topics, stratigraphic terms and units found in the legend. The extensive reference list is intended as a key to the most relevant information sources.


1955 ◽  
Vol 11 ◽  
pp. 1-40
Author(s):  
J Bondam ◽  
H Brown

An account of The Geology and Mineralisation of the Mesters Vig area. It will be best expressed by dividing the descriptions into three different parts. Part I includes the general geology of the Mesters Vig area. It has been prepared by J. Bondam, Geological Survey of Greenland, Copenhagen. The description is a brief summary of the stratigraphy within the area, as it has been established by E. Witzig, Switzerland, former geologist of the Northern Mining Company). To this summary new field and laboratory observations have been added. The geological map has been published through the courtesy of the Northern Mining Company, Copenhagen. Part II deals with the structural relations of the Blyklippen veins, and their influence on ore deposition. The study has been accomplished by H. Brown, Northern Mining Company, during the years 1953 and 1954. Part III will be published later in connection with these two papers. This part will deal with the paragenesis of the ore depositions at Blyklippen.


Sign in / Sign up

Export Citation Format

Share Document