The structure and intrusive mechanism of the Kap Edvard Holm layered gabbro complex, East Greenland

1969 ◽  
Vol 106 (1) ◽  
pp. 46-56 ◽  
Author(s):  
R. Elsdon

SUMMARYThe complex can be divided into three units, here named the Lower, Middle and Upper Layered Series respectively, on the basis of petrochemical data and correction of the dips of the layering for the effects of post-consolidational flexuring. There are no chilled margins, and the contact with the country rock consists of granular basic and ultrabasic rocks, older than the cumulates of the layered series. The intrusive mechanism is considered in the light of field and chemical data.

2007 ◽  
Vol 144 (6) ◽  
pp. 897-908 ◽  
Author(s):  
B. O'Driscoll

AbstractDetailed remapping of the Palaeogene Ardnamurchan Centre 3 gabbros, NW Scotland, suggests that this classic sequence of ring-intrusions forms a composite layered lopolith. The area mapped by previous studies as the Great Eucrite gabbro intrusion comprises 70% by area of Centre 3. Field observations suggest that most of the other smaller ring-intrusions of Centre 3 (interior to the Great Eucrite) constitute either distinct petrological facies of the same intrusion, or included country-rock or peridotite blocks. These observations, together with syn-magmatically deformed inward-dipping modal layering, are used here to support the interpretation that significant central sagging occurred in the intrusion at a late stage in its crystallization history.


1977 ◽  
Vol 41 (318) ◽  
pp. 227-232 ◽  
Author(s):  
G. M. Brown ◽  
A. Peckett

SummaryThe compositions of apatite crystals from seven Skaergaard rocks were obtained by electron-probe microanalysis. These span the range of occurrence from the base to the top of the exposed zones of the layered series. Apatite occurs as an intercumulus phase in the lower zones, but becomes a cumulus phase at a structural height of 1850 m (c. 98 % crystallized), defining the base of Upper Zone b. All apatite analyses show a high F:Cl ratio. There is a slight but significant increase in F and decrease in Cl when the apatite becomes a cumulus phase, the F/Cl values changing from < 10 to > 30. Variations in F:Cl:OH are attributed to differential volatile migration from trapped intercumulus liquid sites. The apatite data provide new support for ferrodiorite-granophyre liquid immiscibility.


Author(s):  
J. M. Carr

A limited amount of careful optical work has been carried out on X three analysed felspars of gabbros belonging to the main layered series of the Skaergaard intrusion, east Greenland (Wager and Deer, 1939). The work was begun with the intention of providing precise optical data to be used in further defining the relationship between composition and optics. The primary precipitate felspar crystals, hitherto thought to be devoid of zoning, were found, however, to possess a zoning which prevents the data being used in this way.


1975 ◽  
Vol 40 (309) ◽  
pp. 33-42 ◽  
Author(s):  
C. B. Dissanayake ◽  
E. A. Vincent

SummaryMercury has been determined by radiochemical neutron-activation analysis in nineteen representative rocks from the Skaergaard intrusion and in the separated cumulus minerals of five. The chilled marginal gabbro contains 0.23 ppm Hg, values in the Layered Series rocks ranging from 0.07 to 0.34 ppm, in one exceptional case reaching 1.23 ppm Hg. There is a tendency for mercury to be more abundant in leucocratic than in average or melanocratic rocks at a similar horizon. Somewhat higher levels of mercury are found in the granophyric rocks at the top of the intrusion.Apart from a weak and sporadic tendency to be preferentially enriched in plagioclase, the distribution of mercury between the various cumulus phases is fairly uniform and it is thought to occur as uncharged atoms mainly occupying spaces resulting from lattice defects and imperfections rather than in specific structural sites.The distribution pattern of mercury in the intrusion appears to be determined by its high volatility and chemical inertness; no real evidence of any chalcophile character is observed.


1971 ◽  
Vol 38 (293) ◽  
pp. 49-57 ◽  
Author(s):  
R. Elsdon

SummaryChemical compositions, unit-cell contents, and optical properties of six clinopyroxenes from the Upper Layered Series are presented. There is a gradual enrichment in iron upwards in the intrusion although there is no measurable effect on the optical properties, possibly because of Cr variation and exsolution of Fe and Ti as oxides. The chemistry of the clinopyroxenes is consistent with crystallization from a water-rich magma of transitional nature between tholeiite and alkali-olivine basalt. X-ray oscillation photographs of single crystals reveal the presence of sub-microscopic exsolution lamellae of pigeonite, a feature consistent with the transitional nature of the parent magma. Exsolution lamellae of titanomagnetite are ubiquitous and were formed at subsolidus temperatures in response to high buffered oxygen fugacity. Comparisons are made between the properties of clinopyroxenes from the Lower, Middle, and Upper Layered Series, and the conditions of crystallization of each series.


Author(s):  
W. A. Deer ◽  
D. Abbott

SummaryThe major part of the Kap Edvard Holm complex consists of two series of conspicuously banded gabbroic rocks. The primary minerals of both lower and upper layered series show a progressive change in composition, from higher to lower temperature phases, with increasing height in the complex. Minor fluctuations in the differentiation of the two series occur but the division of the layered rocks into the lower and upper series is based on abrupt and major changes in the compositions of the pyroxenes, olivine and plagioclase. This break is correlated with the injection of a large volume of undifferentiated magma which occurred after much of the lower layered series had consolidated, and from which the rocks of the upper layered series were formed. Twelve pyroxenes, five from the lower and seven from the upper layered series have been analysed; the relationships between their optical properties and chemical composition, and between the cell parameters and composition are considered. The crystallization trend of the pyroxenes is compared with that of the Skaergaard calcium-rich pyroxenes; it is suggested that the restricted enrichment in iron shown by the Kap Edvard Holm pyroxenes may be related to the higher water-vapour pressures which prevailed during much of the period of crystallization.


1993 ◽  
Vol 34 (4) ◽  
pp. 681-710 ◽  
Author(s):  
C. TEGNER ◽  
J. R. WILSON ◽  
C. K. BROOKS

1997 ◽  
Vol 134 (1) ◽  
pp. 67-89 ◽  
Author(s):  
JOHN G. ARNASON ◽  
DENNIS K. BIRD ◽  
STEFAN BERNSTEIN ◽  
NICHOLAS M. ROSE ◽  
CRAIG E. MANNING

The Kruuse Fjord Gabbro Complex is a composite intrusion of layered gabbro and troctolite with subordinate ultramafic rocks and minor trondhjemitic bodies. It was emplaced into Archaean continental crust of East Greenland during early Tertiary rifting of Greenland from Eurasia. The work to date has identified an outer gabbro series and an inner troctolite series, and these are separated by a narrow zone of trondhjemitic intrusions. In the southeast, the partially crystallized cumulates of the gabbro series were intruded by a lenticular, ultramafic pluton 800 m in thickness. Volumetrically minor, syenite–trachyandesite net-veined dykes and later, diabase dykes cross-cut the plutonic rocks. Structural and topographic features suggest that the layered rocks were affected by synmagmatic subsidence and deformation but not by monoclinal coastal flexure.The gabbro series is composed of a marginal gabbro unit, about 20 m wide, bordering more than a 2 km thickness of layered olivine and magnetite gabbro cumulates. The marginal gabbro is interpreted to be chilled magma. The layered cumulates are the product of repeated injections of magma that fractionated in an open-system magma chamber. Anorthositic and troctolitic layers in the lower part of the sequence may represent inputs of magma and suggest that the order of cumulus mineral crystallization was (1) plagioclase (An39–85), (2) olivine (Fo46–82), (3) augite (Wo28–47En39–58Fs8–18 ) and (4) magnetite. The disappearance of cumulus magnetite and a reversal in mineral compositions at 1.5 km from the base of the succession suggests a major input of magma occurred at this height. In the troctolite series, the composition of cumulus minerals, mineral crystallization sequence and style of emplacement are similar to those in the gabbro series. The ultramafic pluton is composed of coarse-grained wehrlite, olivine melagabbro and troctolite that were formed by at least three injections of magma. The typical mineral crystallization sequence was (1) cumulus chromite and olivine (Fo84–88); (2) poikilitic chrome diopside (Wo29–51En43–63Fs3–13 ); and (3) intercumulus plagioclase (An75–90), phlogopite, apatite and localized disseminated sulphides containing Au and platinum-group elements.Comparison of crystallization sequences and the major and trace element compositions of clinopyroxene suggests that the gabbroic and troctolitic rocks formed from a magma represented by the chilled marginal gabbro, a tholeiitic basalt magma similar to E-MORB, whereas the ultramafic rocks formed from a magma that was relatively enriched in incompatible trace elements and volatiles. The association of these two magma types is an example of bimodal mafic–ultramafic magmatism in a rifting environment.


Sign in / Sign up

Export Citation Format

Share Document