Multiple Archaean to Early Palaeozoic events of the northern Gondwana margin witnessed by detrital zircons from the Radzimowice Slates, Kaczawa Complex (Central European Variscides)

2007 ◽  
Vol 145 (1) ◽  
pp. 85-93 ◽  
Author(s):  
RAFAŁ TYSZKA ◽  
RYSZARD KRYZA ◽  
JAN A. ZALASIEWICZ ◽  
ALEXANDER N. LARIONOV

AbstractSIMS dating of detrital zircons from the stratigraphically enigmatic Radzimowice Slates of the Kaczawa Mountains (Sudetes, SW Poland), near the eastern termination of the European Variscides, has yielded age populations of: (1) 493–512 Ma, corresponding to late Cambrian to early Ordovician magmatism and constraining a maximum depositional age; (2) between 550 and 650 Ma, reflecting input from diverse Cadomian sources; and (3) older inherited components ranging to c. 3.3 Ga, with age spectra similar to those from Gondwanan North Africa. The new data show that the Radzimowice Slates cannot form a Proterozoic base to the Kaczawa Mountains succession, as suggested by earlier models, but was deposited, at the earliest, as an extensional basin-fill, during a relatively late stage of the break-up of this part of northern Gondwana.

2007 ◽  
Vol 164 (6) ◽  
pp. 1207-1215 ◽  
Author(s):  
R. Kryza ◽  
J.A. Zalasiewicz ◽  
S. Mazur ◽  
P. Aleksandrowski ◽  
S. Sergeev ◽  
...  

2021 ◽  
Vol 124 (2) ◽  
pp. 353-382
Author(s):  
M.J. de Wit ◽  
S. Bowring ◽  
R. Buchwaldt ◽  
F.Ö. Dudas ◽  
D. MacPhee ◽  
...  

Abstract In 1964, W.Q. Kennedy suggested that the crust of Saharan Africa is different from the rest of Africa. To date, the geologic evolution of this region remains obscure because the age and composition of crystalline basement are unknown across large sectors of the Sahara. Most of Africa comprises Archaean cratons surrounded by Palaeo- to Mesoproterozoic orogenic belts, which together constitute Africa’s three major shields (the Southern, Central and West African Shields), finally assembled along belts of Pan-African rocks. By contrast, central Saharan Africa (5.3x106 km2), an area just over half the size of Europe, is considered either as a Neoproterozoic region constructed of relatively juvenile crust (0.5 to 1.0 Ga), or as an older (North African) shield that was reactivated and re-stabilized during that time, a period commonly referred to as “Pan African”. Here, using U-Pb zircon age determinations and Nd isotopic data, we show that remote areas in Chad, part of the undated Darfur Plateau stretching across ¾ million km2 of the central Sahara, comprise an extensive Neoproterozoic crystalline basement of pre-tectonic gabbro-tonalite-granodiorite and predominantly post-tectonic alkali feldspar granites and syenites that intruded between ca. 550 to 1050 Ma. This basement is flanked along its western margin by a Neoproterozoic continental calc-alkaline magmatic arc coupled to a cryptic suture zone that can be traced for ~2400 km from Tibesti through western Darfur into Cameroon. We refer to this as the Central Saharan Belt. This, in a Gondwana framework, is part of a greater arc structure, which we here term the Great Central Gondwana Arc (GCGA). Inherited zircons and Nd isotopic ratios indicate the Neoproterozoic magmas in the central Sahara were predominantly derived from Mesoproterozoic continental lithosphere. Regional deformation between 613 to 623 Ma marks the onset of late alkaline granite magmatism that was widespread across a much larger area of North Africa until about 550 Ma. During this magmatism, the region was exhumed and eroded, leaving a regional peneplain on which early Palaeozoic (Lower-Middle Cambrian) siliciclastic sediments were subsequently deposited, as part of a thick and widespread cover that stretched across much of North Africa and the Arabian Peninsula. Detrital zircons in these cover sequences provide evidence that a substantial volume of detritus was derived from the central Sahara region, because these sequences include ‘Kibaran-age’ zircons (ca. 1000 Ma) for which a source terrain has hitherto been lacking. We propose that, in preference to calling the central Sahara a “ghost” or “meta” craton, it should be called the Central Sahara Shield.


2019 ◽  
Vol 156 (12) ◽  
pp. 2117-2124
Author(s):  
Nikolay Bonev ◽  
Petyo Filipov ◽  
Raya Raicheva ◽  
Massimo Chiaradia ◽  
Robert Moritz

AbstractWe focused on the Pirin–Pangeon–Thasos carbonate sequence of the Rhodope thrust system, combining Sr isotopes from marble with U–Pb dating of detrital zircons from interlayered schists with outcrop near the villages of Ilindentsi and Petrovo in Bulgaria. The youngest zircon age at Ilindentsi is 266 Ma, i.e. Middle Permian, while the youngest zircon at Petrovo yielded an age of 290 Ma, i.e. Early Permian. Strontium isotopes range from 0.707420 to 0.707653, and are consistent with a Middle Permian maximum depositional age. Middle Permian sedimentation of this carbonate platform most likely occurred along the Eurasian margin rather than the Gondwana margin.


2008 ◽  
Vol 145 (6) ◽  
pp. 886-891 ◽  
Author(s):  
GUIDO MEINHOLD ◽  
DIRK FREI

AbstractU–Pb LA–SF–ICP–MS analyses of detrital zircons from a metalitharenite on Inousses Island, Greece, gave major age groups of 310–350, 450–500, 550–700, 900–1050 and 1880–2040 Ma and minor peaks between 2600 and 2800 Ma. The youngest concordant zircon grains of 310–330 Ma indicate the maximum age of deposition to be Late Carboniferous, rather than Ordovician, as had been earlier assumed. The lack of zircon ages between 1.1 and 1.8 Ga, coupled with the occurrence ofc.2-Ga-old zircons, imply a northern Gondwana-derived source. Detrital zircons from a garnet–mica schist on Psara Island yielded a major age group ofc.295–325 Ma and only minor Early Palaeozoic and Late Neoproterozoic ages. The youngest grains around 270 Ma indicate the maximum age of deposition to be Late Permian. The Early Palaeozoic ages support a source from terranes at the southern margin of Laurussia during the Late Palaeozoic and hence clarify the palaeotectonic position of units from the eastern Aegean Sea within the Palaeotethyan realm.


Sign in / Sign up

Export Citation Format

Share Document