Geochemical reconnaissance of the Guéra and Ouaddaï Massifs in Chad: evolution of Proterozoic crust in the Central Sahara Shield

2021 ◽  
Vol 124 (2) ◽  
pp. 353-382
Author(s):  
M.J. de Wit ◽  
S. Bowring ◽  
R. Buchwaldt ◽  
F.Ö. Dudas ◽  
D. MacPhee ◽  
...  

Abstract In 1964, W.Q. Kennedy suggested that the crust of Saharan Africa is different from the rest of Africa. To date, the geologic evolution of this region remains obscure because the age and composition of crystalline basement are unknown across large sectors of the Sahara. Most of Africa comprises Archaean cratons surrounded by Palaeo- to Mesoproterozoic orogenic belts, which together constitute Africa’s three major shields (the Southern, Central and West African Shields), finally assembled along belts of Pan-African rocks. By contrast, central Saharan Africa (5.3x106 km2), an area just over half the size of Europe, is considered either as a Neoproterozoic region constructed of relatively juvenile crust (0.5 to 1.0 Ga), or as an older (North African) shield that was reactivated and re-stabilized during that time, a period commonly referred to as “Pan African”. Here, using U-Pb zircon age determinations and Nd isotopic data, we show that remote areas in Chad, part of the undated Darfur Plateau stretching across ¾ million km2 of the central Sahara, comprise an extensive Neoproterozoic crystalline basement of pre-tectonic gabbro-tonalite-granodiorite and predominantly post-tectonic alkali feldspar granites and syenites that intruded between ca. 550 to 1050 Ma. This basement is flanked along its western margin by a Neoproterozoic continental calc-alkaline magmatic arc coupled to a cryptic suture zone that can be traced for ~2400 km from Tibesti through western Darfur into Cameroon. We refer to this as the Central Saharan Belt. This, in a Gondwana framework, is part of a greater arc structure, which we here term the Great Central Gondwana Arc (GCGA). Inherited zircons and Nd isotopic ratios indicate the Neoproterozoic magmas in the central Sahara were predominantly derived from Mesoproterozoic continental lithosphere. Regional deformation between 613 to 623 Ma marks the onset of late alkaline granite magmatism that was widespread across a much larger area of North Africa until about 550 Ma. During this magmatism, the region was exhumed and eroded, leaving a regional peneplain on which early Palaeozoic (Lower-Middle Cambrian) siliciclastic sediments were subsequently deposited, as part of a thick and widespread cover that stretched across much of North Africa and the Arabian Peninsula. Detrital zircons in these cover sequences provide evidence that a substantial volume of detritus was derived from the central Sahara region, because these sequences include ‘Kibaran-age’ zircons (ca. 1000 Ma) for which a source terrain has hitherto been lacking. We propose that, in preference to calling the central Sahara a “ghost” or “meta” craton, it should be called the Central Sahara Shield.

2019 ◽  
Vol 60 (8) ◽  
pp. 1543-1574 ◽  
Author(s):  
Eszter Badenszki ◽  
J Stephen Daly ◽  
Martin J Whitehouse ◽  
Andreas Kronz ◽  
Brian G J Upton ◽  
...  

Abstract Deep crustal felsic xenoliths from classic Scottish Midland Valley localities, carried to the surface by Permo-Carboniferous magmatism, are shown for the first time to include metaigneous varieties with dioritic and tonalitic protoliths. Four hypotheses regarding their origin have been evaluated: (1) Precambrian basement; (2) Permo-Carboniferous underplating; (3) ‘Newer Granite’ magmatism; (4) Ordovician arc magmatism. U–Pb zircon dating results rule out the Precambrian basement and Permo-Carboniferous underplating hypotheses, but establish that the meta-igneous xenoliths represent both ‘Newer Granite’ and Ordovician (to possibly Silurian) arc magmatism. The metadiorite xenoliths are shown to have protolith ages of c. 415 Ma with εHft zircon values ranging from +0·1 to +11·1. These are interpreted to represent unexposed ‘Newer Granite’ plutons, based on age, mineralogical, isotopic and geochemical data. This shows that Devonian ‘Newer Granite’ magmatism had a greater impact on the Midland Valley and Southern Uplands crust than previously realized. Clinopyroxene–plagioclase–quartz barometry on the metadiorites from the east and west of the Midland Valley yielded a similar pressure range of c. 5–10 kbar, and a metadiorite from the east yielded a minimum two-feldspar temperature estimate of c. 793–816°C. These results indicate that the metadiorites once resided in the middle–lower crust. In contrast, two metatonalite xenoliths have a Late Ordovician protolith age (c. 453 Ma), with zircon εHft values of +7·8 to +9·0. These are interpreted as samples of a buried Late Ordovician magmatic arc situated within the Midland Valley. Inherited zircons with similar Late Ordovician ages and εHft=453 values (+1·6 to +10·8) are present in the metadiorites, suggesting that the Devonian ‘Newer Granites’ intruded within or through this Late Ordovician Midland Valley arc. A younger protolith age of c. 430 Ma from one of the metatonalites suggests that arc activity continued until Silurian times. This validates the long-standing ‘arc collision’ hypothesis for the development of the Caledonian Orogen. Based on U–Pb zircon dating, the metatonalite and metadiorite xenoliths have both experienced metamorphism between c. 400 and c. 391 Ma, probably linked to the Acadian Orogeny. An older phase of metamorphism at c. 411 Ma was possibly triggered by the combined effects of heating owing to the emplacement of the ‘Newer Granite’ plutons and the overthrusting of the Southern Uplands terrane onto the southern margin of the Midland Valley terrane.


2007 ◽  
Vol 145 (1) ◽  
pp. 85-93 ◽  
Author(s):  
RAFAŁ TYSZKA ◽  
RYSZARD KRYZA ◽  
JAN A. ZALASIEWICZ ◽  
ALEXANDER N. LARIONOV

AbstractSIMS dating of detrital zircons from the stratigraphically enigmatic Radzimowice Slates of the Kaczawa Mountains (Sudetes, SW Poland), near the eastern termination of the European Variscides, has yielded age populations of: (1) 493–512 Ma, corresponding to late Cambrian to early Ordovician magmatism and constraining a maximum depositional age; (2) between 550 and 650 Ma, reflecting input from diverse Cadomian sources; and (3) older inherited components ranging to c. 3.3 Ga, with age spectra similar to those from Gondwanan North Africa. The new data show that the Radzimowice Slates cannot form a Proterozoic base to the Kaczawa Mountains succession, as suggested by earlier models, but was deposited, at the earliest, as an extensional basin-fill, during a relatively late stage of the break-up of this part of northern Gondwana.


1994 ◽  
Vol 131 (2) ◽  
pp. 169-179 ◽  
Author(s):  
Gonzalo Vidal ◽  
Sören Jensen ◽  
Teodoro Palacios

AbstractSimple trace fossils are reported from three localities in central Spain within a monotonous succession of shale and greywacke and classical turbidites attributed to the Neoproterozoic (Riphean) Lower Alcudian megaunit. The Lower Alcudian strata are believed to have a complex tectonic history including deformation during the Pan-African Orogeny. Chronostratigraphic control is not available for this structurally complex succession and fossil evidence is sparse. Here we report on a low-diversity ichnofossil association including the ichnospecies (isp.) Gordia marina Emmons, 1844, Gordia isp., G. aff. arcuata Książkiewicz, 1977. The stratigraphically inferred Proterozoic age of the rocks, added to the present ichnofossil association, suggests that colonization of deeper waters started before the early Cambrian. We further consider that the plausible oxygen requirements of marine invertebrate(s) which produced the present ichnofossil taxa may well have exceeded the oxygen levels in a largely dysaerobic environment. A circulation model proposed by one of us (Palacios, 1989), implying the presence of extensive upwelling and descending oxygen-rich waters, helps to explain the continuous colonization of deep-water settings in Lower and Upper Alcudian strata. We argue that the ichnofaunal record of strata older than 650 Ma is both rare and inconclusive. Moreover, the present ichnofauna, being similar to ichnofaunal associations in environmentally comparable Upper Alcudian strata, is largely documented from Neoproterozoic (Vendian) and early Palaeozoic associations elsewhere. We conclude that the new ichnofossil evidence is consistent with a Vendian or younger age for the Lower Alcudian megaunit. This view is also consistent with a recently published maximum deposition age of 565 Ma inferred from U–Pb datings of detrital zircons from the supposedly much older (Middle Riphean) Tentudia Group or ‘Serie Negra’, that appears roughly time-equivalent with Lower Alcudian strata. It thus may appear that basin formation and flysch deposition in central Iberia encompass a minor segment of Neoproterozoic time, being probably limited to the Vendian. By default, formerly postulated Pan-African deformation of Neoproterozoic Lower Alcudian strata appears implausible. We further conclude that the complex pre-Phanerozoic structural history of Alcudian strata is probably restricted to Cadomian and younger deformation. Former structural models need substantial revision.


Minerals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 36 ◽  
Author(s):  
Victoria B. Ershova ◽  
Andrei V. Prokopiev ◽  
Andrey K. Khudoley ◽  
Tom Andersen ◽  
Kåre Kullerud ◽  
...  

U–Pb and Lu–Hf isotope analyses of detrital zircons collected from metasedimentary rocks from the southern part of Kara Terrane (northern Taimyr and Severnaya Zemlya archipelago) provide vital information about the paleogeographic and tectonic evolution of the Russian High Arctic. The detrital zircon signatures of the seven dated samples are very similar, suggesting a common provenance for the clastic detritus. The majority of the dated grains belong to the late Neoproterozoic to Cambrian ages, which suggests the maximum depositional age of the enclosing sedimentary units to be Cambrian. The εHf(t) values indicate that juvenile magma mixed with evolved continental crust and the zircons crystallized within a continental magmatic arc setting. Our data strongly suggest that the main provenance for the studied clastics was located within the Timanian Orogen. A review of the available detrital zircon ages from late Neoproterozoic to Cambrian strata across the wider Arctic strongly suggests that Kara Terrane, Novaya Zemlya, Seward Peninsula (Arctic Alaska), Alexander Terrane, De Long Islands, and Scandinavian Caledonides all formed a single tectonic domain during the Cambrian age, with clastics predominantly sourced from the Timanian Orogen.


2007 ◽  
Vol 144 (6) ◽  
pp. 963-976 ◽  
Author(s):  
P. Montero ◽  
F. Bea ◽  
F. González-Lodeiro ◽  
C. Talavera ◽  
M. J. Whitehouse

AbstractDating the pre-Middle Ordovician metavolcanic rocks and metagranites of the Ollo de Sapo Domain has, historically, been difficult because of the small compositional variation, the effects of the Variscan orogeny and, as revealed in this paper, the unusually high fraction of inherited zircon components. The first reliable zircon data (U–Pb ion microprobe and Pb–Pb stepwise evaporation) indicate that the Ollo de Sapo volcanism spanned 495±5 Ma to 483±3 Ma, and was followed by the intrusion of high-level granites from 483±3 Ma to 474±4 Ma. In both metavolcanic rocks and metagranites, no less than 70–80% of zircon grains are either totally Precambrian or contain a Precambrian core overgrown by a Cambro-Ordovician rim. About 80–90% of inherited zircons are Early Ediacaran (602–614 Ma) and derived from calc-alkaline intermediate to felsic igneous rocks generated at the end of the Pan-African arc–continent collision. In the Villadepera region, located to the west, both the metagranites and metavolcanic rocks also contain Meso-Archaean zircons (3.0–3.2 Ga) which ultimately originated from the West African Craton. In the Hiendelaencina region, located to the east, both the metagranites and metavolcanic rocks lack Meso-Archaean zircons, but they have two different inherited zircon populations, one Cryogenian (650–700 Ma) and the other Tonian (850–900 Ma), which suggest older-than-Ediacaran additional island-arc components. The different proportion of source components and the marked variation of the 87Sr/86Srinit. suggest, at least tentatively, that the across-arc polarity of the remnants of the Pan-African arc of Iberia trended east–west (with respect to the current coordinates) during Cambro-Ordovician times, and that the passive margin was situated to the west.


Sign in / Sign up

Export Citation Format

Share Document