scholarly journals Internal structure and development of an aeolian river dune in The Netherlands, using 3-D interpretation of ground-penetrating radar data

2002 ◽  
Vol 81 (1) ◽  
pp. 27-37 ◽  
Author(s):  
R.L. Van Dam

AbstractGround-penetrating radar data from a regular grid are used to study the internal structure and development of a 9-m high aeolian river dune in the Dutch Rhine-Meuse delta. The purpose of this investigation was to image the internal sedimentary structures to better understand the development of these aeolian river dunes. Three radar facies can be recognised in the GPR sections. Radar facies 1 has a maximum thickness of 5 to 6 m and is characterised by dipping, parallel reflections with a maximum length of at least 20 m. The reflections from perpendicular sections, analysed using closed-loop correlation in 3-D-interpretation software, form eastward dipping (14° maximum) surfaces. Radar facies 2 is one continuous, sub-horizontal reflection. This high amplitude reflection is most probably caused by a thin organic horizon. Radar facies 3 has a thickness of 3 to 4 m and is made up of sets of short, predominantly eastward to north-eastward dipping reflections separated by rather continuous, sub-horizontal reflections. The eastward dipping surfaces in radar facies 1 are foresets of a dune that was deposited by prevailing westerly winds in the Younger Dryas, the last cold period in the Pleistocene. During the Early Holocene, an increasing vegetation cover stabilised the dune and formed a thin organic horizon. Subsequent resumption of dune forming processes led to the formation of radar facies 3 on top of the vegetated Pleistocene dune. Sedimentation by small dunes, partly eroding each other, led to sets of cross-stratification separated by bounding surfaces. The results suggest a small change in palaeo wind direction.

2016 ◽  
Vol 46 (1) ◽  
pp. 15-27 ◽  
Author(s):  
Larissa Natsumi Tamura ◽  
Renato Paes de Almeida ◽  
Fabio Taioli ◽  
André Marconato ◽  
Liliane Janikian

ABSTRACT: One key factor for the advance in the study of fluvial deposits is the application of geophysical methods, being the Ground Penetrating Radar one of special value. Although applied to active rivers, the method is not extensively tested on the rock record, bearing interest for hydrocarbon reservoir analogue models. The São Sebastião and Marizal formations were the subject of previous studies, which made possible the comparison of Ground Penetrating Radar survey to previous stratigraphic studies in order to identify the best combination of resolution, penetration and antenna frequency for the studied subject. Eight radar facies were identified, being six of them related to fluvial sedimentary environments, one related to eolian sedimentary environment and one radar facies interpreted as coastal sedimentary environment. The Ground Penetrating Radar data showed compatibility to sedimentary structures in the outcrops, like planar and trough cross-stratified beds. It is noted that the obtained resolution was efficient in the identification of structures up to 0.3 m using a 100 MHz antenna. In this way, the Ground Penetrating Radar survey in outcrops bears great potential for further works on fluvial depositional architecture.


Geophysics ◽  
2000 ◽  
Vol 65 (1) ◽  
pp. 113-125 ◽  
Author(s):  
Xiaoxian Zeng ◽  
George A. McMechan ◽  
Tong Xu

To evaluate the importance of amplitude‐versus‐offset information in the interpretation of ground‐penetrating radar (GPR) data, GPR reflections are synthesized as a function of antenna separation using a 2.5-D finite‐difference solution of Maxwell’s equations. The conductivity, the complex dielectric permittivity, and the complex magnetic permeability are varied systematically in nine suites of horizontally layered models. The source used is a horizontal transverse‐electric dipole situated at the air‐earth interface. Cole‐Cole relaxation mechanisms define the frequency dependence of the media. Reflection magnitudes and their variations with antenna separation differ substantially, depending on the contrast in electromagnetic properties that caused the reflection. The spectral character of the dielectric and magnetic relaxations produces only second‐order variations in reflection coefficients compared with those associated with contrasts in permittivity, conductivity, and permeability, so they may not be separable even when they are detected. In typical earth materials, attenuation of propagating GPR waves is influenced most strongly by conductivity, followed by dielectric relaxation, followed by magnetic relaxation. A pervasive feature of the simulated responses is a locally high amplitude associated with the critical incident angle at the air‐earth interface in the antenna radiation pattern. Full wavefield simulations of two field data sets from a fluvial/eolian environment are able to reproduce the main amplitude behaviors observed in the data.


2016 ◽  
Vol 28 (1) ◽  
pp. 31
Author(s):  
Kris Budiono

Subsurface Tertiary to Quaternary deposits from coast of Subi Kecil Island, Natuna Distric, Riau Archipelago Province, were imaged with Ground Penetrating Radar (GPR). The GPR survey was carried out by using GSSI Surveyor III/20 with 270 MHz and 40 MHz of 3200 MLF antennas. GPR data were processed using software GSSI’s RADAN for Windows NT™. The interpretation were done by using the radar facies as a groups of radar reflections. The GPR images of study area can be recoqnized in to several facies such as parallel, sub parallel, chaotic, oblique, mound and reflection-free. The calibration were done with geological data along the coast (cliff and outcrop). Unit A is the uppermost layer which is characterized by continous to non continous pararel reflection, srong reflector and high amplitude and is interpreted as alluvium deposits. Below the unit A is unit B which is characterized by non continous sub parallel, chaotic and mound reflector, strong reflector and high amplitude. Unit C and D (Mio-Oligocene) are overlain by unit A and B include chaotic, reflection-free and, locally, discontinuous parallel, oblique mound reflector radar facies, correlatable at the cliff face to massive sands, mostly representing near coastal deposits. These units are bounded by continuous, high amplitude reflections that can be easily correlatable throughout the GPR profiles, serving as important stratigraphic markers. The GPR survey may improve the reconstruction of the depositional environments through the recognition of massive and unconsolidated sand deposits within unit A and B (Holocene). The stratigraphic framework was also improved through the recognition of the discontinuity surface between Units C and D. Keywords: radar facies, stratigraphy, Tertiary to Quatenary, Subi Kecil Island Pencitraan endapan bawah permukaan Tersier sampai Kuarter di pantai Pulau Subi Kecil, Natuna, Propinsi Riau Kepulauan, telah dilakukan dengan “Ground Penetrating Radar (GPR). Survey GPR dilakukan menggunakan SIR 20 GSSI dengan antenna 200 MHz, 40 MHz da MLF 3200. Data GPR diproses mengunakan perangkat lunak Radan GSSI untuk Window NTTM. Citra Radar di daerah penelitian dapat dibagi menjadi reflektor paralel, sub paralel, chaotik, oblik, undulasi dan bebas refleksi. Kalibrasi telah dilakukan dengan kondisi geologi sepanjang pantai (tebing dan singkapan batuan). Unit A merupakan lapisan paling atas, dicirikan oleh reflektor parallel yang menerus dan tidak menerus, reflektor kuat, amplitudo tinggi dan ditafsirkan sebagai endapan alluvium. Di bawah unit A adalah unit B yang dicirikan oleh reflektor sub paralel yang menerus sampai tidak menerus, chaotic, hiperbolik, dengan reflektor kuat dan amplitudo tinggi. Unit C dan D (Mio-Oligosen) ditutupi oleh unit B yang dicirikan oleh fasies reflektor chaotic, bebas reflektor, dan secara lokal pararel tidak menerus, miring dan hiperbolik, dapat dikorelasikan dengan pasir padat pada tebing sebagai endapan dekat pantai. Citra GPR memperlihatkan rekonstruksi lingkungan pengendapan melalui pengenalan pasir padat dan pasir lepas pada unit A dan B (Holosen). Kerangka stratigrafi akan lebih baik melalui pengenalan ketidak menerusan lapisan antara unit C dan D. Kata kunci: fasies radar, stratigrafi, Tersier sampai Kuarter, Pulau Subi Kecil


PIERS Online ◽  
2006 ◽  
Vol 2 (6) ◽  
pp. 567-572
Author(s):  
Hui Zhou ◽  
Dongling Qiu ◽  
Takashi Takenaka

2021 ◽  
pp. 1-19
Author(s):  
Melchior Grab ◽  
Enrico Mattea ◽  
Andreas Bauder ◽  
Matthias Huss ◽  
Lasse Rabenstein ◽  
...  

Abstract Accurate knowledge of the ice thickness distribution and glacier bed topography is essential for predicting dynamic glacier changes and the future developments of downstream hydrology, which are impacting the energy sector, tourism industry and natural hazard management. Using AIR-ETH, a new helicopter-borne ground-penetrating radar (GPR) platform, we measured the ice thickness of all large and most medium-sized glaciers in the Swiss Alps during the years 2016–20. Most of these had either never or only partially been surveyed before. With this new dataset, 251 glaciers – making up 81% of the glacierized area – are now covered by GPR surveys. For obtaining a comprehensive estimate of the overall glacier ice volume, ice thickness distribution and glacier bed topography, we combined this large amount of data with two independent modeling algorithms. This resulted in new maps of the glacier bed topography with unprecedented accuracy. The total glacier volume in the Swiss Alps was determined to be 58.7 ± 2.5 km3 in the year 2016. By projecting these results based on mass-balance data, we estimated a total ice volume of 52.9 ± 2.7 km3 for the year 2020. Data and modeling results are accessible in the form of the SwissGlacierThickness-R2020 data package.


Sign in / Sign up

Export Citation Format

Share Document