scholarly journals The a-points of Faber polynomials for a special function

1970 ◽  
Vol 11 (1) ◽  
pp. 1-6
Author(s):  
Hassoon S. Al-Amiri

Let f(ζ) be a power series of the formwhere lim sup |an|1/n < ∞. The Faber polynomials {fn(ζ)} (n = 0, 1, 2, …) are the polynomial parts of the formal expansion of (f(ζ))n about ζ = ∞. Series (1) defines an analytic element of an analytic function which we designate as w = f(ζ). Since at ζ = ∞ the analytic element is univalent in some neighborhood of infinity; thus the inverse of this element is uniquely determined in some neighborhood of w= ∞, and has a Laurent expansion of the formwhere lim sup |bn|1/n = p < ∞. Let ζ = g(w) be this single-valued function defined by (2) in |w| > p. No analytic continuation of g(w) will be considered.

1982 ◽  
Vol 23 (1) ◽  
pp. 41-52
Author(s):  
Daniel J. Troy

Given a polynomially bounded multisequence {fm}, where m = (m1, …, mk) ∈ ℤk, we will consider 2k power series in exp(iz1), …, exp(izk), each representing a holomorphic function within its domain of convergence. We will consider this same multisequence as a linear functional on a class of functions defined on the k-dimensional torus by a Fourier series, , with the proper convergence criteria. We shall discuss the relationships that exist between the linear functional properties of the multisequence and the analytic continuation of the holomorphic functions. With this approach we show that a necessary and sufficient condition that the multisequence be given by a polynomial is that each of the power series represents, up to a unit factor, the same function that is entire in the variables


1983 ◽  
Vol 26 (4) ◽  
pp. 454-463
Author(s):  
Bruce L. R. Shawyer ◽  
Ludwig Tomm

AbstractThe behaviour of summability transforms of power series outside their circles of convergence has been studied by many authors. In the case of the geometric series Luh [6] and Tomm [10] showed that there exist regular methods A which provide an analytic continuation into any given simply connected region G that contains the unit disc but not the point 1. Moreover, the Atransforms of the geometric series may be required to converge to any chosen analytic function on prescribed regions outside the unit circle. In this paper, these results are extended to power series representing other meromorphic functions. It is also shown that the summability methods involved may be chosen to be generalized weighted means previously introduced by Faulstich [1].


Author(s):  
Roberto Garrappa ◽  
Sergei Rogosin ◽  
Francesco Mainardi

AbstractRecently S. Gerhold and R. Garra – F. Polito independently introduced a new function related to the special functions of the Mittag-Leffler family. This function is a generalization of the function studied by É. Le Roy in the period 1895-1905 in connection with the problem of analytic continuation of power series with a finite radius of convergence. In our note we obtain two integral representations of this special function, calculate its Laplace transform, determine an asymptotic expansion of this function on the negative semi-axis (in the case of an integer third parameter


1966 ◽  
Vol 62 (4) ◽  
pp. 637-642 ◽  
Author(s):  
T. W. Cusick

For a real number λ, ‖λ‖ is the absolute value of the difference between λ and the nearest integer. Let X represent the m-tuple (x1, x2, … xm) and letbe any n linear forms in m variables, where the Θij are real numbers. The following is a classical result of Khintchine (1):For all pairs of positive integers m, n there is a positive constant Г(m, n) with the property that for any forms Lj(X) there exist real numbers α1, α2, …, αn such thatfor all integers x1, x2, …, xm not all zero.


1981 ◽  
Vol 33 (5) ◽  
pp. 1255-1260 ◽  
Author(s):  
Thomas A. Metzger

Let Δ denote the unit disk in the complex plane C. The space BMO has been extensively studied by many authors (see [3] for a good exposition of this topic). Recently, the subspace BMOA (Δ) has become a topic of interest. An analytic function f, in the Hardy class H2(A), belongs to BMOA (Δ) if(1)whereIt is known (see [3, p. 96]) that (1) is equivalent to(2)


1968 ◽  
Vol 9 (2) ◽  
pp. 146-151 ◽  
Author(s):  
F. J. Rayner

Letkbe any algebraically closed field, and denote byk((t)) the field of formal power series in one indeterminatetoverk. Letso thatKis the field of Puiseux expansions with coefficients ink(each element ofKis a formal power series intl/rfor some positive integerr). It is well-known thatKis algebraically closed if and only ifkis of characteristic zero [1, p. 61]. For examples relating to ramified extensions of fields with valuation [9, §6] it is useful to have a field analogous toKwhich is algebraically closed whenkhas non-zero characteristicp. In this paper, I prove that the setLof all formal power series of the form Σaitei(where (ei) is well-ordered,ei=mi|nprt,n∈ Ζ,mi∈ Ζ,ai∈k,ri∈ Ν) forms an algebraically closed field.


Author(s):  
S. N. Afriat

Since the first introduction of the concept of a matrix, questions about functions of matrices have had the attention of many writers, starting with Cayley(i) in 1858, and Laguerre(2) in 1867. In 1883, Sylvester(3) defined a general function φ(a) of a matrix a with simple characteristic roots, by use of Lagrange's interpolation formula, and Buchheim (4), in 1886, extended his definition to the case of multiple characteristic roots. Then Weyr(5) showed in 1887 that, for a matrix a with characteristic roots lying inside the circle of convergence of a power series φ(ζ), the power series φ(a) is convergent; and in 1900 Poincaré (6) obtained the formulaefor the sum, where C is a circle lying in and concentric with the circle of convergence, and containing all the characteristic roots in its ulterior, such a formula having effectively been suggested by Frobenius(7) in 1896 for defining a general function of a matrix. Phillips (8), in 1919, discovered the analogue, for power series in matrices, of Taylor's theorem. In 1926 Hensel(9) completed the result of Weyr by showing that a necessary and sufficient condition for the convergence of φ(a) is the convergence of the derived series φ(r)(α) (0 ≼ r < mα; α) at each characteristic root α of a, of order r at most the multiplicity mα of α. In 1928 Giorgi(10) gave a definition, depending on the classical canonical decomposition of a matrix, which is equivalent to the contour integral formula, and Fantappie (11) developed the theory of this formula, and obtained the expressionfor the characteristic projectors.


1991 ◽  
Vol 43 (1) ◽  
pp. 182-212 ◽  
Author(s):  
K. I. Oskolkov

AbstractThe following special function of two real variables x2 and x1 is considered: and its connections with the incomplete Gaussian sums where ω are intervals of length |ω| ≤1. In particular, it is proved that for each fixed x2 and uniformly in X2 the function H(x2, x1) is of weakly bounded 2-variation in the variable x1 over the period [0, 1]. In terms of the sums W this means that for collections Ω = {ωk}, consisting of nonoverlapping intervals ωk ∪ [0,1) the following estimate is valid: where card denotes the number of elements, and c is an absolute positive constant. The exact value of the best absolute constant к in the estimate (which is due to G. H. Hardy and J. E. Littlewood) is discussed.


1982 ◽  
Vol 34 (4) ◽  
pp. 952-960 ◽  
Author(s):  
W. T. Tutte

This paper is a continuation of the Waterloo Research Report CORR 81-12, (see [1]) referred to in what follows as I. That Report is entitled “Chromatic Solutions”. It is largely concerned with a power series h in a variable z2, in which the coefficients are polynomials in a “colour number” λ. By definition the coefficient of z2r, where r > 0, is the sum of the chromatic polynomials of the rooted planar triangulations of 2r faces. (Multiple joins are allowed in these triangulations.) Thus for a positive integral λ the coefficient is the number of λ-coloured rooted planar triangulations of 2r faces. The use of the symbol z2 instead of a simple letter t is for the sake of continuity with earlier papers.In I we consider the case(1)where n is an integer exceeding 4.


Sign in / Sign up

Export Citation Format

Share Document