scholarly journals Primitive skew Laurent polynomial rings

1978 ◽  
Vol 19 (1) ◽  
pp. 79-85 ◽  
Author(s):  
D. A. Jordan

In [8] the author studied the question of the primitivity of an Ore extension R[x, δ], where δ is a derivation of the ring R. If a is an automorphism of R then it can be shown that R[x, α] is primitive if the following conditions are satisfied: (i) no power αsS ≥ 1, of α is inner; (ii) the only ideals of R invariant under α are 0 and R. These conditions are also known to be necessary and sufficient for the skew Laurent polynomial ring R[x, x−1, α] to be simple [9]. The object of this paper is to find conditions which are sufficient for R[x, x−1, α] to be primitive. The results obtained are remarkably similar to those of [8]. Two logically independent conditions are each found to be sufficient for the primitivity of R[x, x−1, α]. Of these, one is also shown to be sufficient for R[x, α] to be primitive. Included in the examples illustrating these results are some applications to the theory of primitive group rings. The basic techniques involved are also applied to produce a counterexample to the converse of a theorem of Goldie and Michler [3] on when R[x, x−1, α] is a Jacobson ring.

1977 ◽  
Vol 18 (1) ◽  
pp. 93-97 ◽  
Author(s):  
D. A. Jordan

Apart from simple Ore extensions such as the Weyl algebras, the best known example of a primitive Ore extension is the universal enveloping algebra U(g) of the 2-dimensional solvable Lie algebra g over a field k of characteristic zero, see [4, p. 22]. U(g) is a polynomial algebra over k in two indeterminates x and y with multiplication subject to the relation xy – yx = y, and may be regarded either as an Ore extension of k [x] by the k-automorphism which maps x to x – 1 or as an Ore extension of k[y] by the derivation yd/dy. The argument suggested in [4, p. 22] to prove the primitivity of U(g) can easily be generalised [6] to show that, if α is an automorphism of the ring R then the following conditions are sufficient for R[x, α] to be primitive: (i) no power αs, s ≧ 1, of α is inner; (ii) the only ideals of R invariant under α are 0 and R. These conditions are necessary and sufficient for the simplicity of the skew Laurent polynomial ring R[x, x–1, α] but are not necessary for the primitivity of R[x, α] (the ordinary polynomial ring D[x] over a division ring D not algebraic over its centre is easily seen to be primitive).


2015 ◽  
Vol 14 (04) ◽  
pp. 1550055
Author(s):  
Thomas Hüttemann ◽  
David Quinn

Let C be a bounded cochain complex of finitely generated free modules over the Laurent polynomial ring L = R[x, x-1, y, y-1]. The complex C is called R-finitely dominated if it is homotopy equivalent over R to a bounded complex of finitely generated projective R-modules. Our main result characterizes R-finitely dominated complexes in terms of Novikov cohomology: C is R-finitely dominated if and only if eight complexes derived from C are acyclic; these complexes are C ⊗L R〚x, y〛[(xy)-1] and C ⊗L R[x, x-1]〚y〛[y-1], and their variants obtained by swapping x and y, and replacing either indeterminate by its inverse.


2013 ◽  
Vol 12 (04) ◽  
pp. 1250192 ◽  
Author(s):  
JOHAN ÖINERT ◽  
JOHAN RICHTER ◽  
SERGEI D. SILVESTROV

The aim of this paper is to describe necessary and sufficient conditions for simplicity of Ore extension rings, with an emphasis on differential polynomial rings. We show that a differential polynomial ring, R[x; id R, δ], is simple if and only if its center is a field and R is δ-simple. When R is commutative we note that the centralizer of R in R[x; σ, δ] is a maximal commutative subring containing R and, in the case when σ = id R, we show that it intersects every nonzero ideal of R[x; id R, δ] nontrivially. Using this we show that if R is δ-simple and maximal commutative in R[x; id R, δ], then R[x; id R, δ] is simple. We also show that under some conditions on R the converse holds.


1993 ◽  
Vol 36 (2) ◽  
pp. 299-317 ◽  
Author(s):  
K. W. Mackenzie

Let R be a commutative ring and {σ1,…,σn} a set of commuting automorphisms of R. Let T = be the skew Laurent polynomial ring in n indeterminates over R and let be the Laurent polynomial ring in n central indeterminates over R. There is an isomorphism φ of right R-modules between T and S given by φ(θj) = xj. We will show that the map φ induces a bijection between the prime ideals of T and the Γ-prime ideals of S, where Γ is a certain set of endomorphisms of the ℤ-module S. We can study the structure of the lattice of Γ-prime ideals of the ring S by using commutative algebra, and this allows us to deduce results about the prime ideal structure of the ring T. As an example, if R is a Cohen-Macaulay ℂ-algebra and the action of the σj on R is locally finite-dimensional, we will show that the ring T is catenary.


1974 ◽  
Vol 26 (1) ◽  
pp. 121-129 ◽  
Author(s):  
S. M. Woods

The aim of this paper is to find necessary and sufficient conditions on a group G and a ring A for the group ring AG to be semi-perfect. A complete answer is given in the commutative case, in terms of the polynomial ring A[X] (Theorem 5.8). In the general case examples are given which indicate a very strong interaction between the properties of A and those of G. Partial answers to the question are given in Theorem 3.2, Proposition 4.2 and Corollary 4.3.


2018 ◽  
Vol 20 ◽  
pp. 01001
Author(s):  
Chang Gyu Whan

In this paper, we will survey recent results on weakly factorial domains base on the results of [11, 13, 14]. LetD be an integral domain, X be an indeterminate over D, d ∈ D, R = D[X,d/X] be a subring of the Laurent polynomial ring D[X,1/X], Γ be a nonzero torsionless commutative cancellative monoid with quotient group G, and D[Γ] be the semigroup ring of Γ over D. Among other things, we show that R is a weakly factorial domain if and only if D is a weakly factorial GCD‐domain and d = 0, d is a unit of D or d is a prime element of D. We also show that if char(D) = 0 (resp., char(D) = p > 0), then D[Γ] is a weakly factorial domain if and only if D is a weakly factorial GCD domain, Γ is a weakly factorial GCD semigroup, and G is of type (0,0,0,…) (resp., (0,0,0,…) except p).


2014 ◽  
Vol 57 (3) ◽  
pp. 609-613 ◽  
Author(s):  
Alireza Nasr-Isfahani

AbstractWe provide necessary and sufficient conditions for a skew polynomial ring of derivation type to be semiprimitive when the base ring has no nonzero nil ideals. This extends existing results on the Jacobson radical of skew polynomial rings of derivation type.


2018 ◽  
Vol 27 (14) ◽  
pp. 1850076 ◽  
Author(s):  
Lorenzo Traldi

We extend the notion of link colorings with values in an Alexander quandle to link colorings with values in a module [Formula: see text] over the Laurent polynomial ring [Formula: see text]. If [Formula: see text] is a diagram of a link [Formula: see text] with [Formula: see text] components, then the colorings of [Formula: see text] with values in [Formula: see text] form a [Formula: see text]-module [Formula: see text]. Extending a result of Inoue [Knot quandles and infinite cyclic covering spaces, Kodai Math. J. 33 (2010) 116–122], we show that [Formula: see text] is isomorphic to the module of [Formula: see text]-linear maps from the Alexander module of [Formula: see text] to [Formula: see text]. In particular, suppose [Formula: see text] is a field and [Formula: see text] is a homomorphism of rings with unity. Then [Formula: see text] defines a [Formula: see text]-module structure on [Formula: see text], which we denote [Formula: see text]. We show that the dimension of [Formula: see text] as a vector space over [Formula: see text] is determined by the images under [Formula: see text] of the elementary ideals of [Formula: see text]. This result applies in the special case of Fox tricolorings, which correspond to [Formula: see text] and [Formula: see text]. Examples show that even in this special case, the higher Alexander polynomials do not suffice to determine [Formula: see text]; this observation corrects erroneous statements of Inoue [Quandle homomorphisms of knot quandles to Alexander quandles, J. Knot Theory Ramifications 10 (2001) 813–821; op. cit.].


2020 ◽  
Vol 29 (06) ◽  
pp. 2050036
Author(s):  
Sandy Ganzell ◽  
Mercedes V. Gonzalez ◽  
Chloe’ Marcum ◽  
Nina Ryalls ◽  
Mariel Santos

We study the effects of certain local moves on Homflyptand Kauffman polynomials. We show that all Homflypt(or Kauffman) polynomials are equal in a certain nontrivial quotient of the Laurent polynomial ring. As a consequence, we discover some new properties of these invariants.


Sign in / Sign up

Export Citation Format

Share Document