scholarly journals Semigroups of continuous selfmaps for which Green's and ℐ relations coincide

1979 ◽  
Vol 20 (1) ◽  
pp. 25-28 ◽  
Author(s):  
K. D. Magill

For algebraic terms which are not defined, one may consult [2]. The symbol S(X) denotes the semigroup, under composition, of all continuous selfmaps of the topological space X. When X is discrete, S(X) is simply the full transformation semigroup on the set X. It has long been known that Green's relations and ℐ coincide for [2, p. 52] and F. A. Cezus has shown in his doctoral dissertation [1, p. 34] that and ℐ also coincide for S(X) when X is the one-point compactification of the countably infinite discrete space. Our main purpose here is to point out the fact that among the 0-dimensional metric spaces, Cezus discovered the only nondiscrete space X with the property that and ℐ coincide on the semigroup S(X). Because of a result in a previous paper [6] by S. Subbiah and the author, this property (for 0-dimensional metric spaces) is in turn equivalent to the semigroup being regular. We gather all this together in the following

1971 ◽  
Vol 17 (3) ◽  
pp. 223-236 ◽  
Author(s):  
J. M. Howie

In an earlier paper (5) a description was given in set-theoretic terms of the semigroup generated by the idempotents of a full transformation semigroup , one of the results being that if X is finite then every element of that is not bijective is expressible as a product of idempotents. In view of this it was natural to ask whether by analogy every singular square matrix is expressibleas a product of idempotent matrices. This is indeed the case, as was shown by J. A. Erdos (2). Magill (6) has considered products of idempotents in thesemigroup of all continuous self-maps of a topological space X, but a comparable characterization of products of idempotents in this case appears to be extremelydifficult, and no solution is available yet.


1998 ◽  
Vol 57 (1) ◽  
pp. 59-71 ◽  
Author(s):  
Rachel Thomas

In this paper we consider the characterisation of those elements of a transformation semigroup S which are a product of two proper idempotents. We give a characterisation where S is the endomorphism monoid of a strong independence algebra A, and apply this to the cases where A is an arbitrary set and where A is an arbitrary vector space. The results emphasise the analogy between the idempotent generated subsemigroups of the full transformation semigroup of a set and of the semigroup of linear transformations from a vector space to itself.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Fatemah Ayatollah Zadeh Shirazi ◽  
Meysam Miralaei ◽  
Fariba Zeinal Zadeh Farhadi

In the following text, we want to study the behavior of one point compactification operator in the chain Ξ := {Metrizable, Normal, T2, KC, SC, US, T1, TD, TUD, T0, Top} of subcategories of category of topological spaces, Top (where we denote the subcategory of Top, containing all topological spaces with property P , simply by P). Actually we want to know, for P∈Ξ and X∈P, the one point compactification of topological space X belongs to which elements of Ξ. Finally we find out that the chain {Metrizable, T2, KC, SC, US, T1, TD, TUD, T0, Top} is a forwarding chain with respect to one point compactification operator.


1977 ◽  
Vol 18 (2) ◽  
pp. 199-207 ◽  
Author(s):  
Bridget Bos Baird

All topological spaces here are assumed to be T2. The collection F(Y)of all homeomorphisms whose domains and ranges are closed subsets of a topological space Y is an inverse semigroup under the operation of composition. We are interested in the general problem of getting some information about the subsemigroups of F(Y) whenever Y is a compact metric space. Here, we specifically look at the problem of determining those spaces X with the property that F(X) is isomorphic to a subsemigroup of F(Y). The main result states that if X is any first countable space with an uncountable number of points, then the semigroup F(X) can be embedded into the semigroup F(Y) if and only if either X is compact and Y contains a copy of X, or X is noncompact and locally compact and Y contains a copy of the one-point compactification of X.


2011 ◽  
Vol 18 (03) ◽  
pp. 523-532 ◽  
Author(s):  
Lei Sun ◽  
Weina Deng ◽  
Huisheng Pei

The paper is concerned with the so-called natural order on the semigroup [Formula: see text], where [Formula: see text] is the full transformation semigroup on a set X, E is a non-trivial equivalence on X and R is a cross-section of the partition X/E induced by E. We determine when two elements of TE(X,R) are related under this order, find elements of TE(X,R) which are compatible with ≤ on TE(X,R), and observe the maximal and minimal elements and the covering elements.


2005 ◽  
Vol 71 (1) ◽  
pp. 69-74 ◽  
Author(s):  
Gonca Ayik ◽  
Hayrullah Ayik ◽  
Yusuf Ünlü ◽  
John M. Howie

The index and period of an element a of a finite semigroup are the smallest values of m ≥ 1 and r ≥ 1 such that am+r = am. An element with index m and period 1 is called an m-potent element. For an element α of a finite full transformation semigroup with index m and period r, a unique factorisation α = σβ such that Shift(σ) ∩ Shift(β) = ∅ is obtained, where σ is a permutation of order r and β is an m-potent. Some applications of this factorisation are given.


2016 ◽  
Vol 09 (01) ◽  
pp. 1650042
Author(s):  
Somnuek Worawiset

We classify the maximal Clifford inverse subsemigroups [Formula: see text] of the full transformation semigroup [Formula: see text] on an [Formula: see text]-element set with [Formula: see text] for all [Formula: see text]. This classification differs from the already known classifications of Clifford inverse semigroups, it provides an algorithm for its construction. For a given natural number [Formula: see text], we find also the largest size of an inverse subsemigroup [Formula: see text] of [Formula: see text] satisfying [Formula: see text] with least rank [Formula: see text] for any element in [Formula: see text].


2008 ◽  
Vol 78 (1) ◽  
pp. 117-128 ◽  
Author(s):  
LEI SUN ◽  
HUISHENG PEI ◽  
ZHENGXING CHENG

AbstractLet 𝒯X be the full transformation semigroup on a set X and E be a nontrivial equivalence on X. Write then TE(X) is a subsemigroup of 𝒯X. In this paper, we endow TE(X) with the so-called natural order and determine when two elements of TE(X) are related under this order, then find out elements of TE(X) which are compatible with ≤ on TE(X). Also, the maximal and minimal elements and the covering elements are described.


2013 ◽  
Vol 12 (08) ◽  
pp. 1350041 ◽  
Author(s):  
LEI SUN ◽  
JUNLING SUN

Let [Formula: see text] be the full transformation semigroup on a nonempty set X and E be an equivalence relation on X. Then [Formula: see text] is a subsemigroup of [Formula: see text]. In this paper, we endow it with the natural partial order. With respect to this partial order, we determine when two elements are related, find the elements which are compatible and describe the maximal (minimal) elements. Also, we investigate the greatest lower bound of two elements.


Sign in / Sign up

Export Citation Format

Share Document