On the asymptotic behaviour of nonlinear systems of ordinary differential equations

1985 ◽  
Vol 26 (2) ◽  
pp. 161-170
Author(s):  
Zhivko S. Athanassov

In this paper we study the asymptotic behaviour of the following systems of ordinary differential equations:where the identically zero function is a solution of (N) i.e. f(t, 0)=0 for all time t. Suppose one knows that all the solutions of (N) which start near zero remain near zero for all future time or even that they approach zero as time increases. For the perturbed systems (P) and (P1) the above property concerning the solutions near zero may or may not remain true. A more precise formulation of this problem is as follows: if zero is stable or asymptotically stable for (N), and if the functions g(t, x) and h(t, x) are small in some sense, give conditions on f(t, x) so that zero is (eventually) stable or asymptotically stable for (P) and (P1).

Author(s):  
Takaŝi Kusano ◽  
Manabu Naito ◽  
Kyoko Tanaka

SynopsisThe equation to be considered iswhere pi(t), 0≦i≦n, and q(t) are continuous and positive on some half-line [a, ∞). It is known that (*) always has “strictly monotone” nonoscillatory solutions defined on [a, ∞), so that of particular interest is the extreme situation in which such strictly monotone solutions are the only possible nonoscillatory solutions of (*). In this paper sufficient conditions are given for this situation to hold for (*). The structure of the solution space of (*) is also studied.


Author(s):  
John A. D. Appleby ◽  
David W. Reynolds

This paper studies the asymptotic behaviour of the solutions of the scalar integro-differential equation The kernel k is assumed to be positive, continuous and integrable.If it is known that all solutions x are integrable and x(t) → 0 as t → ∞, but also that x = 0 cannot be exponentially asymptotically stable unless there is some γ > 0 such that Here, we restrict the kernel to be in a class of subexponential functions in which k(t) → 0 as t → ∞ so slowly that the above condition is violated. It is proved here that the rate of convergence of x(t) → 0 as t → ∞ is given by The result is proved by determining the asymptotic behaviour of the solution of the transient renewal equation If the kernel h is subexponential, then


1970 ◽  
Vol 68 (1) ◽  
pp. 143-151 ◽  
Author(s):  
Russell A. Smith

1. Introduction: Consider the system of ordinary differential equationswhere the unknown x(t) is a complex m-vector, t is a real variable, D is the operator d/dt and a0, …, an are complex m × m matrices whose elements are continuous functions of t, x, Dx, …, Dn−1x. Furthermore, det a0 ╪ 0. In the special case when a0, …, an are constant matrices the trivial solution x = 0 is asymptotically stable if and only if all the roots of the characteristic equation det f(ζ) = 0 have negative real parts, where


Acta Numerica ◽  
1992 ◽  
Vol 1 ◽  
pp. 141-198 ◽  
Author(s):  
Roswitha März

Differential algebraic equations (DAE) are special implicit ordinary differential equations (ODE)where the partial Jacobian f′y(y, x, t) is singular for all values of its arguments.


2008 ◽  
Vol 2 (2) ◽  
pp. 146-157 ◽  
Author(s):  
P.G.L. Leach ◽  
S.K. Andriopoulos

We present a short history of the Ermakov equation with an emphasis on its discovery by thewest and the subsequent boost to research into invariants for nonlinear systems although recognizing some of the significant developments in the east. We present the modern context of the Ermakov equation in the algebraic and singularity theory of ordinary differential equations and applications to more divers fields. The reader is referred to the previous article (Appl. Anal. Discrete math., 2 (2008), 123-145) for an english translation of Ermakov's original paper.


1985 ◽  
Vol 37 (2) ◽  
pp. 310-323 ◽  
Author(s):  
M. Essén

For f ∊ L−1(0, T), we define the distribution functionwhere T is a fixed positive number and |·| denotes Lebesgue measure. Let Φ:[0, T] → [0, m] be a nonincreasing, right continuous function. In an earlier paper [3], we discussed the equation(0.1)when the coefficient q was allowed to vary in the classWe were in particular interested in finding the supremum and infimum of y(T) when q was in or in the convex hull Ω(Φ) of (see below).


1965 ◽  
Vol 8 (4) ◽  
pp. 453-457
Author(s):  
T. A. Burton

We consider a system of differential equations1where 0 = (o, o) is an isolated singular point. Thus, there exists B > o such that S(0, B) contains only one singular point. Here, S(0, B) denotes a sphere centered at 0 with radius B. We shall denote the boundary of S(0, B) by ∂ S(0, B).


1972 ◽  
Vol 15 (4) ◽  
pp. 609-611 ◽  
Author(s):  
Thomas Rogers

The classical uniqueness theorem of Nagumo [1] for ordinary differential equations is as follows.Theorem. If f(t, y) is continuous on 0≤t≤1, -∞<y<∞ and ifthen there is at most one solution to the initial value problem y'=f(t, y), y(0)=0.


Author(s):  
Dibakar Ghosh ◽  
Anirban Ray ◽  
A. Roy Chowdhury

Forced Lorenz system, important in modeling of monsoonlike phenomena, is analyzed for the existence of heteroclinic orbit. This is done in the light of the suggested new mechanism for the onset of chaos by Magnitskii and Sidorov (2006, “Finding Homoclinic and Heteroclinic Contours of Singular Points of Nonlinear Systems of Ordinary Differential Equations,” Diff. Eq., 39, pp. 1593–1602), where heteroclinic orbits plays important and dominant roles. The analysis is performed based on the theory laid down by Shilnikov. An analytic expression in the form of uniformly convergent series is obtained. The same orbit is also obtained numerically by a technique enunciated by Magnitskii and Sidorov, reproducing the necessary important features.


Sign in / Sign up

Export Citation Format

Share Document