scholarly journals Bifree objects in e-varieties of strict orthodox semigroups and the lattice of strict orthodox *-semigroup varieties

1993 ◽  
Vol 35 (1) ◽  
pp. 25-37 ◽  
Author(s):  
Karl Auinger

For regular semigroups, the appropriate analogue of the concept of a variety seems to be that of an e(xistence)-variety, developed by Hall [6,7,8]. A class V of regular semigroups is an e-variety if it is closed under taking direct products, regular subsemigroups and homomorphic images. For orthodox semigroups, this concept has been introduced under the term “bivariety” by Kaďourek and Szendrei [12]. Hall showed that the collection of all e-varieties of regular semigroups forms a complete lattice under inclusion. Further, he proved a Birkhoff-type theorem: each e-variety is determined by a set of identities. For e-varieties of orthodox semigroups a similar result has been proved by Kaďourek and Szendrei. At variance with the case of varieties, prima facie the free objects in general do not exist for e-varieties. For instance, there is no free regular or free orthodox semigroup. This seems to be true for most of the naturally appearing e-varieties (except for cases of e-varieties which coincide with varieties of unary semigroups such as the classes of all inverse and completely regular semigroups, respectively). This is true if the underlying concept of free objects is denned as usual. Kaďourek and Szendrei adopted the definition of a free object according to e-varieties of orthodox semigroups by taking into account generalized inverses in an appropriate way. They called such semigroups bifree objects. These semigroups satisfy the properties one intuitively expects from the “most general members” of a given class of semigroups. In particular, each semigroup in the given class is a homomorphic image of a bifree object, provided the bifree objects exist on sets of any cardinality. Concerning existence, Kaďourek and Szendrei were able to prove that in any class of orthodox semigroups which is closed under taking direct products and regular subsemigroups, all bifree objects exist and are unique up to isomorphism. Further, similar to the case of varieties, there is an order inverting bijection between the fully invariant congruences on the bifree orthodox semigroup on an infinite set and the e-varieties of orthodox semigroups. Recently, Y. T. Yeh [22] has shown that suitable analogues to free objects exist in an e-variety V of regular semigroups if and only if all members of V are either E-solid or locally inverse.

1989 ◽  
Vol 40 (1) ◽  
pp. 59-77 ◽  
Author(s):  
T.E. Hall

A natural concept of variety for regular semigroups is introduced: an existence variety (or e-variety) of regular semigroups is a class of regular semigroups closed under the operations H, Se, P of taking all homomorphic images, regular subsernigroups and direct products respectively. Examples include the class of orthodox semigroups, the class of (regular) locally inverse semigroups and the class of regular E-solid semigroups. The lattice of e-varieties of regular semigroups includes the lattices of varieties of inverse semigroups and of completely regular semigroups. A Birkhoff-type theorem is proved, showing that each e-variety is determined by a set of identities: such identities are then given for many e-varieties. The concept is meaningful in universal algebra, and as for regular semigroups could give interesting results for e-varieties of regular rings.


1991 ◽  
Vol 43 (2) ◽  
pp. 225-241 ◽  
Author(s):  
Karl Auinger

The problem of characterizing the semigroups with Boolean congruence lattices has been solved for several classes of semigroups. Hamilton [9] and the author of this paper [1] studied the question for semilattices. Hamilton and Nordahl [10] considered commutative semigroups, Fountain and Lockley [7,8] solved the problem for Clifford semigroups and idempotent semigroups, in [1] the author generalized their results to completely regular semigroups. Finally, Zhitomirskiy [19] studied the question for inverse semigroups.


1977 ◽  
Vol 29 (6) ◽  
pp. 1171-1197 ◽  
Author(s):  
Mario Petrich

We adopt the following definition of a completely regular semigroup S: for every element a of S, there exists a unique element a-1 of S such that


1988 ◽  
Vol 109 (3-4) ◽  
pp. 329-339
Author(s):  
P.G. Trotter

SynopsisA subset Y of a free completely regular semigroup FCRx freely generates a free completely regular subsemigroup if and only if (i) each -class of FCRx contains at most one element of Y, (ii) {Dy;y ∊ Y} freely generates a free subsemilattice of the free semilattice FCRx/), and (iii) Y consists of non-idempotents. A similar description applies in free objects of some subvarieties of the variety of all completely regular semigroups.


1990 ◽  
Vol 32 (2) ◽  
pp. 137-152 ◽  
Author(s):  
Mario Petrich ◽  
Norman R. Reilly

A semigroup endowed with a unary operation satisfying the identitiesis a completely regular semigroup. In several recent papers devoted to the study of the lattice of subvarieties of the variety of completely regular semigroups, various results have been obtained which decompose special intervals in into either direct products or subdirect products. Petrich [14], Hall and Jones [6] and Rasin [20] have shown that certain intervals of the form , where is the trivial variety and are subdirect products of and Pastijn and Trotter [13] show that certain intervals of the form are direct products of the intervals and The main objective of this paper is to develop an appropriate lattice theoretic framework for these representations.


Author(s):  
P. R. Jones

AbstractSeveral morphisms of this lattice V(CR) are found, leading to decompostions of it, and various sublattices, into subdirect products of interval sublattices. For example the map V → V ∪ G (where G is the variety of groups) is shown to be a retraction of V(CR); from modularity of the lattice V(BG) of varieties of bands of groups it follows that the map V → (V ∪ V V G) is an isomorphism of V(BG).


Sign in / Sign up

Export Citation Format

Share Document