scholarly journals Eta-products which are simultaneous eigenforms of Hecke operators

1993 ◽  
Vol 35 (3) ◽  
pp. 307-323 ◽  
Author(s):  
Anthony J. F. Biagioli

The Dedekind eta-function is defined for any τ in the upper half-plane bywhere x = exp(2πiτ) and x1/24 = exp(2πiτ/24). By an eta-product we shall mean a functionwhere N ≥ 1 and eachrδ ∈ ℤ. In addition, we shall always assume that is an integer. Using the Legendre-Jacobi symbol (—), we define a Dirichlet character ∈ bywhen a is odd. If p is a prime for which ∈(p) ≠ 0and if F is a function with a Fourier seriesthen we define a Hecke operator Tp bywhereand

1984 ◽  
Vol 25 (1) ◽  
pp. 107-119 ◽  
Author(s):  
F. Grupp

Let k be an even integer greater than or equal to 12 and f an nonzero cusp form of weight k on SL(2, Z). We assume, further, that f is an eigenfunction for all Hecke-Operators and has the Fourier expansionFor every Dirichlet character xmod Q we define


2019 ◽  
Vol 150 (3) ◽  
pp. 1095-1112 ◽  
Author(s):  
Ha Duy Hung ◽  
Luong Dang Ky ◽  
Thai Thuan Quang

AbstractThe aim of this paper is to characterize the non-negative functions φ defined on (0,∞) for which the Hausdorff operator $${\rm {\cal H}}_\varphi f(z) = \int_0^\infty f \left( {\displaystyle{z \over t}} \right)\displaystyle{{\varphi (t)} \over t}{\rm d}t$$is bounded on the Hardy spaces of the upper half-plane ${\rm {\cal H}}_a^p ({\open C}_ + )$, $p\in [1,\infty ]$. The corresponding operator norms and their applications are also given.


1999 ◽  
Vol 42 (2) ◽  
pp. 217-224 ◽  
Author(s):  
Winfried Hohnen

Using the Eichler-Shimura isomorphism and the action of the Hecke operator T2 on period polynomials, we shall give a simple and new proof of the following result (implicitly contained in the literature): let f be a normalized Hecke eigenform of weight k with respect to the full modular group with eigenvalues λp under the usual Hecke operators Tp (p a prime). Let Kf be the field generated over Q by the λp for all p. Let p be a prime of Kf lying above 5. Then


1979 ◽  
Vol 31 (5) ◽  
pp. 1107-1120 ◽  
Author(s):  
Peter C. Greiner

Let(1)and set(2)Here . Z is the “unique” (modulo multiplication by nonzero functions) holomorphic vector-field which is tangent to the boundary of the “degenerate generalized upper half-plane”(3)In our terminology t = Re z1. We note that ℒ is nowhere elliptic. To put it into context, ℒ is of the type □b, i.e. operators like ℒ occur in the study of the boundary Cauchy-Riemann complex. For more information concerning this connection the reader should consult [1] and [2].


1982 ◽  
Vol 34 (5) ◽  
pp. 1183-1194 ◽  
Author(s):  
H. D. Fegan

The purpose of this paper is to study the operator Δ + q. Here Δ is the Laplace–Beltrami operator on a compact Lie group G and q is a matrix coefficient of a representation of G. We are able to calculate the powers of Δ + q acting on the function qku. This is done in Section 2 and the reader is refered there for definitions of the special functions q and u.The interest in the operator Δ + q comes originally from physics and in particular from the Schrödinger equation. This is described in [4]. Here we are restricting ourselves to mathematical questions and shall not consider any applications to physics.In this paper we take the heat equation with potential as(1.1)with , the upper half plane, and initial data f(x, 0) = qk(x)u(x).


1987 ◽  
Vol 39 (6) ◽  
pp. 1434-1445 ◽  
Author(s):  
Benjamin Fine

If d is a positive square free integer we let Od be the ring of integers in and we let Γd = PSL2(Od), the group of linear fractional transformationsand entries from Od {if d = 1, ad – bc = ±1}. The Γd are called collectively the Bianchi groups and have been studied extensively both as abstract groups and in automorphic function theory {see references}. Of particular interest has been Γ1 – the Picard group. Group theoretically Γ1, is very similar to the classical modular group M = PSL2(Z) both in its total structure [4, 6], and in the structure of its congruence subgroups [8]. Where Γ1 and M differ greatly is in their action on the complex place C. M is Fuchsian and therefore acts discontinuously in the upper half-plane and every subgroup has the same property.


2001 ◽  
Vol 44 (3) ◽  
pp. 282-291 ◽  
Author(s):  
Min Ho Lee ◽  
Hyo Chul Myung

AbstractJacobi-like forms for a discrete subgroup are formal power series with coefficients in the space of functions on the Poincaré upper half plane satisfying a certain functional equation, and they correspond to sequences of certain modular forms. We introduce Hecke operators acting on the space of Jacobi-like forms and obtain an explicit formula for such an action in terms of modular forms. We also prove that those Hecke operator actions on Jacobi-like forms are compatible with the usual Hecke operator actions on modular forms.


1981 ◽  
Vol 22 (2) ◽  
pp. 185-197 ◽  
Author(s):  
Marvin I. Knopp

In the earlier article [7], I began the study of rational period functions for the modular group Γ(l) = SL(2, Z) (regarded as a group of linear fractional transformations) acting on the Riemann sphere. These are rational functions q(z) which occur in functional equations of the formwhere k∈Z and F is a function meromorphic in the upper half-plane ℋ, restricted in growth at the parabolic cusp ∞. The growth restriction may be phrased in terms of the Fourier expansion of F(z) at ∞:with some μ∈Z. If (1.1) and (1.2) hold, then we call F a modular integral of weight 2k and q(z) the period of F.


Sign in / Sign up

Export Citation Format

Share Document