scholarly journals Linear groups analogous to permutation groups

1963 ◽  
Vol 3 (2) ◽  
pp. 180-184 ◽  
Author(s):  
W. J. Wong

If G is a finite linear group of degree n, that is, a finite group of automorphisms of an n-dimensional complex vector space (or, equivalently, a finite group of non-singular matrices of order n with complex coefficients), I shall say that G is a quasi-permutation group if the trace of every element of G is a non-negative rational integer. The reason for this terminology is that, if G is a permutation group of degree n, its elements, considered as acting on the elements of a basis of an n-dimensional complex vector space V, induce automorphisms of V forming a group isomorphic to G. The trace of the automorphism corresponding to an element x of G is equal to the number of letters left fixed by x, and so is a non-negative integer. Thus, a permutation group of degree n has a representation as a quasi-permutation group of degree n.

1997 ◽  
Vol 39 (1) ◽  
pp. 51-57 ◽  
Author(s):  
Houshang Behravesh

Let G be a finite linear group of degree n; that is, a finite group of automorphisms of an n-dimensional complex vector space (or, equivalently, a finite group of non-singular matrices of order n with complex coefficients). We shall say that G is a quasi-permutation group if the trace of every element of G is a non-negative rational integer. The reason for this terminology is that, if G is a permutation group of degree n, its elements, considered as acting on the elements of a basis of an n -dimensional complex vector space V, induce automorphisms of V forming a group isomorphic to G. The trace of the automorphism corresponding to an element x of G is equal to the number of letters left fixed by x, and so is a non-negative integer. Thus, a permutation group of degree n has a representation as a quasi-permutation group of degree n. See [5].


1994 ◽  
Vol 36 (3) ◽  
pp. 301-308 ◽  
Author(s):  
J. M. Burns ◽  
B. Goldsmith ◽  
B. Hartley ◽  
R. Sandling

In [6], Wong defined a quasi-permutation group of degree n to be a finite group G of automorphisms of an n-dimensional complex vector space such that every element of G has non-negative integral trace. The terminology derives from the fact that if G is a finite group of permutations of a set ω of size n, and we think of G as acting on the complex vector space with basis ω, then the trace of an element g ∈ G is equal to the number of points of ω fixed by g. In [6] and [7], Wong studied the extent to which some facts about permutation groups generalize to the quasi-permutation group situation. Here we investigate further the analogy between permutation groups and quasipermutation groups by studying the relation between the minimal degree of a faithful permutation representation of a given finite group G and the minimal degree of a faithful quasi-permutation representation. We shall often prefer to work over the rational field rather than the complex field.


1970 ◽  
Vol 22 (3) ◽  
pp. 626-640 ◽  
Author(s):  
Charles Ford

Let ℭ be a finite group with a representation as an irreducible group of linear transformations on a finite-dimensional complex vector space. Every choice of a basis for the space gives the representing transformations the form of a particular group of matrices. If for some choice of a basis the resulting group of matrices has entries which all lie in a subfield K of the complex field, we say that the representation can be realized in K. It is well known that every representation of ℭ can be realized in some algebraic number field, a finitedimensional extension of the rational field Q.


1999 ◽  
Vol 51 (6) ◽  
pp. 1175-1193 ◽  
Author(s):  
G. I. Lehrer ◽  
T. A. Springer

AbstractLet G be a finite group generated by (pseudo-) reflections in a complex vector space and let g be any linear transformation which normalises G. In an earlier paper, the authors showed how to associate with any maximal eigenspace of an element of the coset gG, a subquotient of G which acts as a reflection group on the eigenspace. In this work, we address the questions of irreducibility and the coexponents of this subquotient, as well as centralisers in G of certain elements of the coset. A criterion is also given in terms of the invariant degrees of G for an integer to be regular for G. A key tool is the investigation of extensions of invariant vector fields on the eigenspace, which leads to some results and questions concerning the geometry of intersections of invariant hypersurfaces.


1976 ◽  
Vol 28 (6) ◽  
pp. 1311-1319 ◽  
Author(s):  
L. J. Cummings ◽  
R. W. Robinson

A formula is derived for the dimension of a symmetry class of tensors (over a finite dimensional complex vector space) associated with an arbitrary finite permutation group G and a linear character of x of G. This generalizes a result of the first author [3] which solved the problem in case G is a cyclic group.


2020 ◽  
Vol 32 (3) ◽  
pp. 713-721
Author(s):  
Andrea Lucchini ◽  
Mariapia Moscatiello ◽  
Pablo Spiga

AbstractWe show that there exists a constant a such that, for every subgroup H of a finite group G, the number of maximal subgroups of G containing H is bounded above by {a\lvert G:H\rvert^{3/2}}. In particular, a transitive permutation group of degree n has at most {an^{3/2}} maximal systems of imprimitivity. When G is soluble, generalizing a classic result of Tim Wall, we prove a much stronger bound, that is, the number of maximal subgroups of G containing H is at most {\lvert G:H\rvert-1}.


Author(s):  
Martin W. Liebeck

AbstractA permutation group G on a finite set Ω is always exposable if whenever G stabilises a switching class of graphs on Ω, G fixes a graph in the switching class. Here we consider the problem: given a finite group G, which permutation representations of G are always exposable? We present solutions to the problem for (i) 2-generator abelian groups, (ii) all abelian groups in semiregular representations. (iii) generalised quaternion groups and (iv) some representations of the symmetric group Sn.


Author(s):  
Mahboubeh Alizadeh Sanati

The commutator length “” of a group is the least natural number such that every element of the derived subgroup of is a product of commutators. We give an upper bound for when is a -generator nilpotent-by-abelian-by-finite group. Then, we give an upper bound for the commutator length of a soluble-by-finite linear group over that depends only on and the degree of linearity. For such a group , we prove that is less than , where is the minimum number of generators of (upper) triangular subgroup of and is a quadratic polynomial in . Finally we show that if is a soluble-by-finite group of Prüffer rank then , where is a quadratic polynomial in .


Sign in / Sign up

Export Citation Format

Share Document