scholarly journals MULTIPLE POSITIVE SOLUTIONS OF RESONANT AND NON-RESONANT NON-LOCAL FOURTH-ORDER BOUNDARY VALUE PROBLEMS

2011 ◽  
Vol 54 (1) ◽  
pp. 225-240 ◽  
Author(s):  
J. R. L. WEBB ◽  
M. ZIMA

AbstractWe study the existence of positive solutions for equations of the form where 0 < ω < π, subject to various non-local boundary conditions defined in terms of the Riemann–Stieltjes integrals. We prove the existence and multiplicity of positive solutions for these boundary value problems in both resonant and non-resonant cases. We discuss the resonant case by making a shift and considering an equivalent non-resonant problem.

Filomat ◽  
2019 ◽  
Vol 33 (3) ◽  
pp. 749-759 ◽  
Author(s):  
Şerife Ege ◽  
Fatma Topal

In this paper, we study the existence and multiplicity of positive solutions to the four-point boundary value problems of nonlinear semipositone fractional differential equations. Our results extend some recent works in the literature.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Ruyun Ma ◽  
Chunjie Xie ◽  
Abubaker Ahmed

We use the quadrature method to show the existence and multiplicity of positive solutions of the boundary value problems involving one-dimensional p-Laplacian u′t|p−2u′t′+λfut=0, t∈0,1, u(0)=u(1)=0, where p∈(1,2], λ∈(0,∞) is a parameter, f∈C1([0,r),[0,∞)) for some constant r>0, f(s)>0 in (0,r), and lims→r-(r-s)p-1f(s)=+∞.


2016 ◽  
Vol 25 (2) ◽  
pp. 215-222
Author(s):  
K. R. PRASAD ◽  
◽  
N. SREEDHAR ◽  
L. T. WESEN ◽  
◽  
...  

In this paper, we develop criteria for the existence of multiple positive solutions for second order Sturm-Liouville boundary value problem, u 00 + k 2u + f(t, u) = 0, 0 ≤ t ≤ 1, au(0) − bu0 (0) = 0 and cu(1) + du0 (1) = 0, where k ∈ 0, π 2 is a constant, by an application of Avery–Henderson fixed point theorem.


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Shoucheng Yu ◽  
Zhilin Yang

We study the existence and multiplicity of positive solutions for the system of fourth-order boundary value problems x(4)=ft,x,x′,-x′′,-x′′′,y,y′,-y′′,-y′′′,  y(4)=gt,x,x′,-x′′,-x′′′,y,y′,-y′′,-y′′′,  x(0)=x′(1)=x′′(0)=x′′′(1)=0, and y(0)=y′(1)=y′′(0)=y′′′(1)=0, where f,g∈C([0,1]×R+8,R+)  (R+:=[0,∞)). We use fixed point index theory to establish our main results based on a priori estimates achieved by utilizing some integral identities and inequalities and R+2-monotone matrices.


Sign in / Sign up

Export Citation Format

Share Document