scholarly journals THREE-DIMENSIONAL ISOLATED QUOTIENT SINGULARITIES IN EVEN CHARACTERISTIC

2017 ◽  
Vol 60 (2) ◽  
pp. 435-445
Author(s):  
VLADIMIR SHCHIGOLEV ◽  
DMITRY STEPANOV

AbstractThis paper is a complement to the work of the second author on modular quotient singularities in odd characteristic. Here, we prove that if V is a three-dimensional vector space over a field of characteristic 2 and G < GL(V) is a finite subgroup generated by pseudoreflections and possessing a two-dimensional invariant subspace W such that the restriction of G to W is isomorphic to the group SL2(𝔽2n), then the quotient V/G is non-singular. This, together with earlier known results on modular quotient singularities, implies first that a theorem of Kemper and Malle on irreducible groups generated by pseudoreflections generalizes to reducible groups in dimension three, and, second, that the classification of three-dimensional isolated singularities that are quotients of a vector space by a linear finite group reduces to Vincent's classification of non-modular isolated quotient singularities.

Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1382
Author(s):  
Roger D. Maddux

The Theorems of Pappus and Desargues (for the projective plane over a field) are generalized here by two identities involving determinants and cross products. These identities are proved to hold in the three-dimensional vector space over a field. They are closely related to the Arguesian identity in lattice theory and to Cayley-Grassmann identities in invariant theory.


2020 ◽  
Vol 30 (1) ◽  
pp. 7-22
Author(s):  
Boris A. Pogorelov ◽  
Marina A. Pudovkina

AbstractThe Jevons group AS̃n is an isometry group of the Hamming metric on the n-dimensional vector space Vn over GF(2). It is generated by the group of all permutation (n × n)-matrices over GF(2) and the translation group on Vn. Earlier the authors of the present paper classified the submetrics of the Hamming metric on Vn for n ⩾ 4, and all overgroups of AS̃n which are isometry groups of these overmetrics. In turn, each overgroup of AS̃n is known to define orbital graphs whose “natural” metrics are submetrics of the Hamming metric. The authors also described all distance-transitive orbital graphs of overgroups of the Jevons group AS̃n. In the present paper we classify the distance-transitive orbital graphs of overgroups of the Jevons group. In particular, we show that some distance-transitive orbital graphs are isomorphic to the following classes: the complete graph 2n, the complete bipartite graph K2n−1,2n−1, the halved (n + 1)-cube, the folded (n + 1)-cube, the graphs of alternating forms, the Taylor graph, the Hadamard graph, and incidence graphs of square designs.


1982 ◽  
Vol 86 ◽  
pp. 229-248 ◽  
Author(s):  
Haruhisa Nakajima

Let k be a field of characteristic p and G a finite subgroup of GL(V) where V is a finite dimensional vector space over k. Then G acts naturally on the symmetric algebra k[V] of V. We denote by k[V]G the subring of k[V] consisting of all invariant polynomials under this action of G. The following theorem is well known.Theorem 1.1 (Chevalley-Serre, cf. [1, 2, 3]). Assume that p = 0 or (|G|, p) = 1. Then k[V]G is a polynomial ring if and only if G is generated by pseudo-reflections in GL(V).


2015 ◽  
Vol 29 ◽  
pp. 17-29
Author(s):  
Murali Srinivasan ◽  
Ashish Mishra

We define the commuting algebra determinant of a finite group action on a finite set, a notion dual to the group determinant of Dedekind. We give the following combinatorial example of a commuting algebra determinant. Let $\Bq(n)$ denote the set of all subspaces of an $n$-dimensional vector space over $\Fq$. The {\em type} of an ordered pair $(U,V)$ of subspaces, where $U,V\in \Bq(n)$, is the ordered triple $(\mbox{dim }U, \mbox{dim }V, \mbox{dim }U\cap V)$ of nonnegative integers. Assume that there are independent indeterminates corresponding to each type. Let $X_q(n)$ be the $\Bq(n)\times \Bq(n)$ matrix whose entry in row $U$, column $V$ is the indeterminate corresponding to the type of $(U,V)$. We factorize the determinant of $X_q(n)$ into irreducible polynomials.


Sign in / Sign up

Export Citation Format

Share Document