scholarly journals The upcrossings index and the extremal index

2006 ◽  
Vol 43 (04) ◽  
pp. 927-937 ◽  
Author(s):  
H. Ferreira

For stationary sequences X = {X n } n≥1 we relate τ, the limiting mean number of exceedances of high levels u n by X 1,…,X n , and ν, the limiting mean number of upcrossings of the same level, through the expression θ = (ν/τ)η, where θ is the extremal index of X and η is a new parameter here called the upcrossings index. The upcrossings index is a measure of the clustering of upcrossings of u by variables in X , and the above relation extends the known relation θ = ν/τ, which holds under the mild-oscillation local restriction D″( u ) on X . We present a new family of local mixing conditions D̃ (k)( u ) under which we prove that (a) the intensity of the limiting point process of upcrossings and η can both be computed from the k-variate distributions of X ; and (b) the cluster size distributions for the exceedances are asymptotically equivalent to those for the lengths of one run of exceedances or the lengths of several consecutive runs which are separated by at most k − 2 nonexceedances and, except for the last one, each contain at most k − 2 exceedances.

2006 ◽  
Vol 43 (4) ◽  
pp. 927-937 ◽  
Author(s):  
H. Ferreira

For stationary sequences X = {Xn}n≥1 we relate τ, the limiting mean number of exceedances of high levels un by X1,…,Xn, and ν, the limiting mean number of upcrossings of the same level, through the expression θ = (ν/τ)η, where θ is the extremal index of X and η is a new parameter here called the upcrossings index. The upcrossings index is a measure of the clustering of upcrossings of u by variables in X, and the above relation extends the known relation θ = ν/τ, which holds under the mild-oscillation local restriction D″(u) on X. We present a new family of local mixing conditions D̃(k)(u) under which we prove that (a) the intensity of the limiting point process of upcrossings and η can both be computed from the k-variate distributions of X; and (b) the cluster size distributions for the exceedances are asymptotically equivalent to those for the lengths of one run of exceedances or the lengths of several consecutive runs which are separated by at most k − 2 nonexceedances and, except for the last one, each contain at most k − 2 exceedances.


2012 ◽  
Vol 12 (01) ◽  
pp. 1150004
Author(s):  
RICHARD C. BRADLEY

In an earlier paper by the author, as part of a construction of a counterexample to the central limit theorem under certain strong mixing conditions, a formula is given that shows, for strictly stationary sequences with mean zero and finite second moments and a continuous spectral density function, how that spectral density function changes if the observations in that strictly stationary sequence are "randomly spread out" in a particular way, with independent "nonnegative geometric" numbers of zeros inserted in between. In this paper, that formula will be generalized to the class of weakly stationary, mean zero, complex-valued random sequences, with arbitrary spectral measure.


1984 ◽  
Vol 84 (3) ◽  
pp. 345-358 ◽  
Author(s):  
P. Melinon ◽  
R. Monot ◽  
J.-M. Zellweger ◽  
H. van den Bergh

2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
John-Bruce D. Green ◽  
Phillip W. Carter ◽  
Yingqing Zhang ◽  
Dipa Patel ◽  
Priyanka Kotha ◽  
...  

Detailing the kinetics of particle formation for pharmaceutically relevant solutions is challenging, especially when considering the combination of formulations, containers, and timescales of clinical importance. This paper describes a method for using commercial software Automate with a stream-selector valve capable of sampling container solutions from within an environmental chamber. The tool was built to monitor changes in particle size distributions via instrumental particle counters but can be adapted to other solution-based sensors. The tool and methodology were demonstrated to be highly effective for measuring dynamic changes in emulsion globule distributions as a function of storage and mixing conditions important for parenteral nutrition. Higher levels of agitation induced the fastest growth of large globules (≥5 μm) while the gentler conditions actually showed a decrease in the number of these large globules. The same methodology recorded calcium phosphate precipitation kinetics as a function of [Ca2+] and pH. This automated system is readily adaptable to a wide range of pharmaceutically relevant systems where the particle size is expected to vary with time. This instrumentation can dramatically reduce the time and resources needed to probe complex formulation issues while providing new insights for monitoring the kinetics as a function of key variables.


Author(s):  
Florence Merlevède ◽  
Magda Peligrad ◽  
Sergey Utev

In this chapter, we treat several examples of stationary processes which are asymptotically negatively dependent and for which the results of Chapter 9 apply. Many systems in nature are complex, consisting of the contributions of several independent components. Our first examples are functions of two independent sequences, one negatively dependent and one interlaced mixing. For instance, the class of asymptotic negatively dependent random variables is used to treat functions of a determinantal point process and a Gaussian process with a positive continuous spectral density. Another example is point processes based on asymptotically negatively or positively associated sequences and displaced according to a Gaussian sequence with a positive continuous spectral density. Other examples include exchangeable processes, the weighted empirical process, and the exchangeable determinantal point process.


1997 ◽  
Vol 34 (03) ◽  
pp. 643-656 ◽  
Author(s):  
William P. McCormick

Extreme value results for a class of shot noise processes with heavy tailed amplitudes are considered. For a process of the form, , where {τ k } are the points of a renewal process and {Ak } are i.i.d. with d.f. having a regularly varying tail, the limiting behavior of the maximum is determined. The extremal index is computed and any value in (0, 1) is possible. Two-dimensional point processes of the form are shown to converge to a compound Poisson point process limit. As a corollary to this result, the joint limiting distribution of high local maxima is obtained.


2004 ◽  
Vol 110 (1-4) ◽  
pp. 851-857 ◽  
Author(s):  
B. Grosswendt ◽  
L. De Nardo ◽  
P. Colautti ◽  
S. Pszona ◽  
V. Conte ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document