On some waiting time problems

2000 ◽  
Vol 37 (03) ◽  
pp. 756-764 ◽  
Author(s):  
Valeri T. Stefanov

A unifying technology is introduced for finding explicit closed form expressions for joint moment generating functions of various random quantities associated with some waiting time problems. Sooner and later waiting times are covered for general discrete- and continuous-time models. The models are either Markov chains or semi-Markov processes with a finite number of states. Waiting times associated with generalized phase-type distributions, that are of interest in survival analysis and other areas, are also covered.

2000 ◽  
Vol 37 (3) ◽  
pp. 756-764 ◽  
Author(s):  
Valeri T. Stefanov

A unifying technology is introduced for finding explicit closed form expressions for joint moment generating functions of various random quantities associated with some waiting time problems. Sooner and later waiting times are covered for general discrete- and continuous-time models. The models are either Markov chains or semi-Markov processes with a finite number of states. Waiting times associated with generalized phase-type distributions, that are of interest in survival analysis and other areas, are also covered.


2003 ◽  
Vol 40 (4) ◽  
pp. 881-892 ◽  
Author(s):  
Valeri T. Stefanov

The formation of patterns from letters of a finite alphabet is considered. The strings of letters are generated by general discrete- and continuous-time models which embrace as particular cases all models considered in the literature. The letters of the alphabet are identified by the states of either discrete- or continuous-time semi-Markov processes. A new and unifying method is introduced for evaluation of the generating functions of both the intersite distance between occurrences of an arbitrary, but fixed, pattern and the waiting time until the first occurrence of that pattern. Our method also covers in a unified way relevant and important joint generating functions. Furthermore, our results lead to an easy and efficient implementation of the relevant evaluations.


2003 ◽  
Vol 40 (04) ◽  
pp. 881-892 ◽  
Author(s):  
Valeri T. Stefanov

The formation of patterns from letters of a finite alphabet is considered. The strings of letters are generated by general discrete- and continuous-time models which embrace as particular cases all models considered in the literature. The letters of the alphabet are identified by the states of either discrete- or continuous-time semi-Markov processes. A new and unifying method is introduced for evaluation of the generating functions of both the intersite distance between occurrences of an arbitrary, but fixed, pattern and the waiting time until the first occurrence of that pattern. Our method also covers in a unified way relevant and important joint generating functions. Furthermore, our results lead to an easy and efficient implementation of the relevant evaluations.


1984 ◽  
Vol 16 (1) ◽  
pp. 10-10
Author(s):  
Guy Latouche

One considers semi-Markov processes using phase-type distributions, such that the marginal distribution of the interevent times are identically distributed but not independent. By suitably choosing the phase-type distributions, one obtains an exponential marginal distribution.


2008 ◽  
Vol 28 (2) ◽  
pp. 355-375 ◽  
Author(s):  
Márcio das Chagas Moura ◽  
Enrique López Droguett

In this work it is proposed a model for the assessment of availability measure of fault tolerant systems based on the integration of continuous time semi-Markov processes and Bayesian belief networks. This integration results in a hybrid stochastic model that is able to represent the dynamic characteristics of a system as well as to deal with cause-effect relationships among external factors such as environmental and operational conditions. The hybrid model also allows for uncertainty propagation on the system availability. It is also proposed a numerical procedure for the solution of the state probability equations of semi-Markov processes described in terms of transition rates. The numerical procedure is based on the application of Laplace transforms that are inverted by the Gauss quadrature method known as Gauss Legendre. The hybrid model and numerical procedure are illustrated by means of an example of application in the context of fault tolerant systems.


1996 ◽  
Vol 33 (3) ◽  
pp. 640-653 ◽  
Author(s):  
Tobias Rydén

An aggregated Markov chain is a Markov chain for which some states cannot be distinguished from each other by the observer. In this paper we consider the identifiability problem for such processes in continuous time, i.e. the problem of determining whether two parameters induce identical laws for the observable process or not. We also study the order of a continuous-time aggregated Markov chain, which is the minimum number of states needed to represent it. In particular, we give a lower bound on the order. As a by-product, we obtain results of this kind also for Markov-modulated Poisson processes, i.e. doubly stochastic Poisson processes whose intensities are directed by continuous-time Markov chains, and phase-type distributions, which are hitting times in finite-state Markov chains.


2012 ◽  
Vol 24 (1) ◽  
pp. 49-58 ◽  
Author(s):  
Jerzy Girtler

Abstract The paper provides justification for the necessity to define reliability of diagnosing systems (SDG) in order to develop a diagnosis on state of any technical mechanism being a diagnosed system (SDN). It has been shown that the knowledge of SDG reliability enables defining diagnosis reliability. It has been assumed that the diagnosis reliability can be defined as a diagnosis property which specifies the degree of recognizing by a diagnosing system (SDG) the actual state of the diagnosed system (SDN) which may be any mechanism, and the conditional probability p(S*/K*) of occurrence (existence) of state S* of the mechanism (SDN) as a diagnosis measure provided that at a specified reliability of SDG, the vector K* of values of diagnostic parameters implied by the state, is observed. The probability that SDG is in the state of ability during diagnostic tests and the following diagnostic inferences leading to development of a diagnosis about the SDN state, has been accepted as a measure of SDG reliability. The theory of semi-Markov processes has been used for defining the SDG reliability, that enabled to develop a SDG reliability model in the form of a seven-state (continuous-time discrete-state) semi-Markov process of changes of SDG states.


1959 ◽  
Vol 55 (2) ◽  
pp. 177-180 ◽  
Author(s):  
R. A. Sack

1. Introduction. Ledermann(1) has treated the problem of calculating the asymptotic probabilities that a system will be found in any one of a finite number N of possible states if transitions between these states occur as Markov processes with a continuous time parameter t. If we denote by pi(t) the probability that at time t the system is in the ith state and by aij ( ≥ 0) the constant probability per unit time for transitions from the jth to the ith state, the rate of change of pi is given bywhere the sum is to be taken over all j ≠ i. This set of equations can be written in matrix form aswhere P(t) is the vector with components pi(t) and the constant matrix A has elements


Sign in / Sign up

Export Citation Format

Share Document