The persistence of regular reflection during strong shock diffraction over rigid ramps

2001 ◽  
Vol 431 ◽  
pp. 273-296 ◽  
Author(s):  
L. F. HENDERSON ◽  
K. TAKAYAMA ◽  
W. Y. CRUTCHFIELD ◽  
S. ITABASHI

We report on calculations and experiments with strong shocks diffracting over rigid ramps in argon. The numerical results were obtained by integrating the conservation equations that included the Navier–Stokes equations. The results predict that if the ramp angle θ is less than the angle θe that corresponds to the detachment of a shock, θ < θe, then the onset of Mach reflection (MR) will be delayed by the initial appearance of a precursor regular reflection (PRR). The PRR is subsequently swept away by an overtaking corner signal (cs) that forces the eruption of the MR which then rapidly evolves into a self-similar state. An objective was to make an experimental test of the predictions. These were confirmed by twice photographing the diffracting shock as it travelled along the ramp. We could get a PRR with the first exposure and an MR with the second. According to the von Neumann perfect gas theory, a PRR does not exist when θ < θe. A viscous length scale xint is a measure of the position on the ramp where the dynamic transition PRR → MR takes place. It is significantly larger in the experiments than in the calculations. This is attributed to the fact that fluctuations from turbulence and surface roughness were not modelled in the calculations. It was found that xint → ∞ as θ → θe. Experiments were done to find out how xint depended on the initial shock tube pressure p0. The dependence was strong but could be greatly reduced by forming a Reynolds number based on xint. Finally by definition, regular reflection (RR) never interacts with a boundary layer, while PRR always interacts; so they are different phenomena.

2012 ◽  
Vol 14 (05) ◽  
pp. 1250031
Author(s):  
GUY BERNARD

A global existence result is presented for the Navier–Stokes equations filling out all of three-dimensional Euclidean space ℝ3. The initial velocity is required to have a bell-like form. The method of proof is based on symmetry transformations of the Navier–Stokes equations and a specific upper solution to the heat equation in ℝ3× [0, 1]. This upper solution has a self-similar-like form and models the diffusion process of the heat equation. By a symmetry transformation, the problem is transformed into an equivalent one having a very small initial velocity. Using the upper solution, the equivalent problem is then solved in the time interval [0, 1]. This local solution is then extended to the time interval [0, ∞) by an iterative process. At each step, the problem is extended further in time in an interval of time whose length is greater than one, thus producing the global solution. Each extension is transformed, by an appropriate change of variables, into the first local problem in the time interval [0, 1]. These transformations exploit the diffusive and self-similar-like nature of the upper solution.


1999 ◽  
Vol 387 ◽  
pp. 227-254 ◽  
Author(s):  
VALOD NOSHADI ◽  
WILHELM SCHNEIDER

Plane and axisymmetric (radial), horizontal laminar jet flows, produced by natural convection on a horizontal finite plate acting as a heat dipole, are considered at large distances from the plate. It is shown that physically acceptable self-similar solutions of the boundary-layer equations, which include buoyancy effects, exist in certain Prandtl-number regimes, i.e. 0.5<Pr[les ]1.470588 for plane, and Pr>1 for axisymmetric flow. In the plane flow case, the eigenvalues of the self-similar solutions are independent of the Prandtl number and can be determined from a momentum balance, whereas in the axisymmetric case the eigenvalues depend on the Prandtl number and are to be determined as part of the solution of the eigenvalue problem. For Prandtl numbers equal to, or smaller than, the lower limiting values of 0.5 and 1 for plane and axisymmetric flow, respectively, the far flow field is a non-buoyant jet, for which self-similar solutions of the boundary-layer equations are also provided. Furthermore it is shown that self-similar solutions of the full Navier–Stokes equations for axisymmetric flow, with the velocity varying as 1/r, exist for arbitrary values of the Prandtl number.Comparisons with finite-element solutions of the full Navier–Stokes equations show that the self-similar boundary-layer solutions are asymptotically approached as the plate Grashof number tends to infinity, whereas the self-similar solution to the full Navier–Stokes equations is applicable, for a given value of the Prandtl number, only to one particular, finite value of the Grashof number.In the Appendices second-order boundary-layer solutions are given, and uniformly valid composite expansions are constructed; asymptotic expansions for large values of the lateral coordinate are performed to study the decay of the self-similar boundary-layer flows; and the stability of the jets is investigated using transient numerical solutions of the Navier–Stokes equations.


2019 ◽  
Vol 352 ◽  
pp. 981-1043 ◽  
Author(s):  
Baishun Lai ◽  
Changxing Miao ◽  
Xiaoxin Zheng

1991 ◽  
Vol 227 ◽  
pp. 211-244 ◽  
Author(s):  
E. Meiburg ◽  
P. K. Newton

We study the mixing of fluid in a viscously decaying row of point vortices. To this end, we employ a simplified model based on Stuart's (1967) one-parameter family of solutions to the steady Euler equations. Our approach relates the free parameter to a vortex core size, which grows in time according to the exact solution of the Navier-Stokes equations for an isolated vortex. In this way, we approach an exact solution for small values of t/Re. We investigate how the growing core size leads to a shrinking of the cat's eye and hence to fluid leaking out of the trapped region into the free streams. In particular, we observe that particles initially located close to each other in neighbouring intervals along the streamwise direction escape from the cat's eye near opposite ends. The size of these intervals scales with the inverse square root of the Reynolds number. We furthermore examine the particle escape times and observe a self-similar blow-up for the particles near the border between two adjacent intervals. This can be explained on the basis of a simple stagnation-point flow. An investigation of interface generation shows that viscosity leads to an additional factor proportional to time in the growth rates. Numerical simulations confirm the above results and give a detailed picture of the underlying mixing processes.


Sign in / Sign up

Export Citation Format

Share Document