scholarly journals On the modelling of isothermal gas flows at the microscale

2008 ◽  
Vol 604 ◽  
pp. 235-261 ◽  
Author(s):  
DUNCAN A. LOCKERBY ◽  
JASON M. REESE

This paper makes two new propositions regarding the modelling of rarefied (non-equilibrium) isothermal gas flows at the microscale. The first is a new test case for benchmarking high-order, or extended, hydrodynamic models for these flows. This standing time-varying shear-wave problem does not require boundary conditions to be specified at a solid surface, so is useful for assessing whether fluid models can capture rarefaction effects in the bulk flow. We assess a number of different proposed extended hydrodynamic models, and we find the R13 equations perform the best in this case.Our second proposition is a simple technique for introducing non-equilibrium effects caused by the presence of solid surfaces into the computational fluid dynamics framework. By combining a new model for slip boundary conditions with a near-wall scaling of the Navier--Stokes constitutive relations, we obtain a model that is much more accurate at higher Knudsen numbers than the conventional second-order slip model. We show that this provides good results for combined Couette/Poiseuille flow, and that the model can predict the stress/strain-rate inversion that is evident from molecular simulations. The model's generality to non-planar geometries is demonstrated by examining low-speed flow around a micro-sphere. It shows a marked improvement over conventional predictions of the drag on the sphere, although there are some questions regarding its stability at the highest Knudsen numbers.

2016 ◽  
Vol 35 ◽  
pp. 113-126
Author(s):  
Md Tajul Islam

Steady, laminar and fully developed flows in parallel plate microchannel with asymmetric thermal wall conditions are solved by control volume technique. In order to examine the influence of Reynolds number and Knudsen number on the velocity distributions, a series of simulations are performed for different Reynolds and Knudsen numbers. Nitrogen gas is used as working fluid and we assume the fluid as continuum but employ the slip boundary conditions on the walls. The Navier-Stokes and energy equations are solved simultaneously. The results are found in good agreement with those predicted by analytical solutions in 2D continuous flow model employing first order slip boundary conditions. It is concluded that the rarefaction flattens the velocity distribution. If the product of Reynolds numbers and Knudsen numbers is fixed, the cross sectional average velocity is fixed for incompressible flow.GANIT J. Bangladesh Math. Soc.Vol. 35 (2015) 113-126


2019 ◽  
Vol 141 (9) ◽  
Author(s):  
Yan-Long Zhao ◽  
Zhi-Ming Wang

To characterize the microflow over a larger range of Knudsen numbers, an improved kinetic equation considering the volume diffusion effect for nonideal gases was presented based on Klimontovich's kinetic equation and Enskog equation-based lattice Boltzmann Bhatnagar–Gross–Krook (LBGK) model. Then, with the modified effective viscosity and the second-order slip boundary condition, a series of numerical simulations of gas flows with different mean Knudsen numbers were carried out based on the proposed model. Compared with the solutions of Navier–Stokes equations, Navier–Stokes equations with different slip boundary conditions, bivelocity hydrodynetics, and experimental data, we found that the present model can be valid up to a Knudsen number of 30. It is also shown that the present model furnishes a better solution in the transitional flow regime (0.1 < Kn < 10). The results not only illustrate that the present model could offer a satisfactory solution to a wider range of mean Knudsen number, but also show the importance of the compressibility and surface-dominated effects in micro gas flows. The improved model provides a promising tool for handling the micro gas flows with complex geometries and boundaries.


2021 ◽  
pp. 1-21
Author(s):  
Claudia Gariboldi ◽  
Takéo Takahashi

We consider an optimal control problem for the Navier–Stokes system with Navier slip boundary conditions. We denote by α the friction coefficient and we analyze the asymptotic behavior of such a problem as α → ∞. More precisely, we prove that if we take an optimal control for each α, then there exists a sequence of optimal controls converging to an optimal control of the same optimal control problem for the Navier–Stokes system with the Dirichlet boundary condition. We also show the convergence of the corresponding direct and adjoint states.


Author(s):  
Kangrui Zhou ◽  
Yueqiang Shang

AbstractBased on full domain partition, three parallel iterative finite-element algorithms are proposed and analyzed for the Navier–Stokes equations with nonlinear slip boundary conditions. Since the nonlinear slip boundary conditions include the subdifferential property, the variational formulation of these equations is variational inequalities of the second kind. In these parallel algorithms, each subproblem is defined on a global composite mesh that is fine with size h on its subdomain and coarse with size H (H ≫ h) far away from the subdomain, and then we can solve it in parallel with other subproblems by using an existing sequential solver without extensive recoding. All of the subproblems are nonlinear and are independently solved by three kinds of iterative methods. Compared with the corresponding serial iterative finite-element algorithms, the parallel algorithms proposed in this paper can yield an approximate solution with a comparable accuracy and a substantial decrease in computational time. Contributions of this paper are as follows: (1) new parallel algorithms based on full domain partition are proposed for the Navier–Stokes equations with nonlinear slip boundary conditions; (2) nonlinear iterative methods are studied in the parallel algorithms; (3) new theoretical results about the stability, convergence and error estimates of the developed algorithms are obtained; (4) some numerical results are given to illustrate the promise of the developed algorithms.


Sign in / Sign up

Export Citation Format

Share Document