Turbulent Rayleigh–Bénard convection in a near-critical fluid by three-dimensional direct numerical simulation

2009 ◽  
Vol 619 ◽  
pp. 127-145 ◽  
Author(s):  
G. ACCARY ◽  
P. BONTOUX ◽  
B. ZAPPOLI

This paper presents state of the art three-dimensional numerical simulations of the Rayleigh–Bénard convection in a supercritical fluid. We consider a fluid slightly above its critical point in a cube-shaped cell heated from below with insulated sidewalls; the thermodynamic equilibrium of the fluid is described by the van der Waals equation of state. The acoustic filtering of the Navier–Stokes equations is revisited to account for the strong stratification of the fluid induced by its high compressibility under the effect of its own weight. The hydrodynamic stability of the fluid is briefly reviewed and we then focus on the convective regime and the transition to turbulence. Direct numerical simulations are carried out using a finite volume method for Rayleigh numbers varying from 106 up to 108. A spatiotemporal description of the flow is presented from the convection onset until the attainment of a statistically steady state of heat transfer. This description concerns mainly the identification of the vortical structures in the flow, the distribution of the Nusselt numbers on the horizontal isothermal walls, the structure of the temperature field and the global thermal balance of the cavity. We focus on the influence of the strong stratification of the fluid on the penetrability of the convective structures in the core of the cavity and on its global thermal balance. Finally, a comparison with the case of a perfect gas, at the same Rayleigh number, is presented.

2019 ◽  
Vol 881 ◽  
pp. 1073-1096 ◽  
Author(s):  
Andreas D. Demou ◽  
Dimokratis G. E. Grigoriadis

Rayleigh–Bénard convection in water is studied by means of direct numerical simulations, taking into account the variation of properties. The simulations considered a three-dimensional (3-D) cavity with a square cross-section and its two-dimensional (2-D) equivalent, covering a Rayleigh number range of $10^{6}\leqslant Ra\leqslant 10^{9}$ and using temperature differences up to 60 K. The main objectives of this study are (i) to investigate and report differences obtained by 2-D and 3-D simulations and (ii) to provide a first appreciation of the non-Oberbeck–Boussinesq (NOB) effects on the near-wall time-averaged and root-mean-squared (r.m.s.) temperature fields. The Nusselt number and the thermal boundary layer thickness exhibit the most pronounced differences when calculated in two dimensions and three dimensions, even though the $Ra$ scaling exponents are similar. These differences are closely related to the modification of the large-scale circulation pattern and become less pronounced when the NOB values are normalised with the respective Oberbeck–Boussinesq (OB) values. It is also demonstrated that NOB effects modify the near-wall temperature statistics, promoting the breaking of the top–bottom symmetry which characterises the OB approximation. The most prominent NOB effect in the near-wall region is the modification of the maximum r.m.s. values of temperature, which are found to increase at the top and decrease at the bottom of the cavity.


2018 ◽  
Vol 98 (3) ◽  
Author(s):  
Jörg Schumacher ◽  
Ambrish Pandey ◽  
Victor Yakhot ◽  
Katepalli R. Sreenivasan

2010 ◽  
Vol 648 ◽  
pp. 509-519 ◽  
Author(s):  
JÖRG SCHUMACHER ◽  
OLIVIER PAULUIS

We study shallow moist Rayleigh–Bénard convection in the Boussinesq approximation in three-dimensional direct numerical simulations. The thermodynamics of phase changes is approximated by a piecewise linear equation of state close to the phase boundary. The impact of phase changes on the turbulent fluctuations and the transfer of buoyancy through the layer is discussed as a function of the Rayleigh number and the ability to form liquid water. The enhanced buoyancy flux due to phase changes is compared with dry convection reference cases and related to the cloud cover in the convection layer. This study indicates that the moist Rayleigh–Bénard problem offers a practical framework for the development and evaluation of parameterizations for atmospheric convection.


Sign in / Sign up

Export Citation Format

Share Document