Three-dimensional flow evolution after a dam break

2010 ◽  
Vol 663 ◽  
pp. 456-477 ◽  
Author(s):  
A. FERRARI ◽  
L. FRACCAROLLO ◽  
M. DUMBSER ◽  
E. F. TORO ◽  
A. ARMANINI

In this paper, the wave propagation on a plane dry bottom after a dam break is analysed. Two mathematical models have been used and compared with each other for simulating such a dam-break scenario. First, the fully three-dimensional Navier–Stokes equations for a weakly compressible fluid have been solved using the new smooth particle hydrodynamics formulation, recently proposed by Ferrari et al. (Comput. Fluids, vol. 38, 2009, p. 1203). Second, the two-dimensional shallow water equations (SWEs) are solved using a third-order weighted essentially non-oscillatory finite-volume scheme. The numerical results are critically compared against the laboratory measurements provided by Fraccarollo & Toro (J. Hydraul. Res., vol. 33, 1995, p. 843). The experimental data provide the temporal evolution of the pressure field, the water depth and the vertical velocity profile at 40 gauges, located in the reservoir and in front of the gate. Our analysis reveals the shortcomings of SWEs in the initial stages of the dam-break phenomenon in reproducing many important flow features of the unsteady free-surface flow: the shallow water model predicts a complex wave structure and a wavy evolution of local free-surface elevations in the reservoir that can be clearly identified to be only model artefacts. However, the quasi-incompressible Navier–Stokes model reproduces well the high gradients in the flow field and predicts the cycles of simultaneous rapid decreasing and frozen stages of the free surface in the tank along with the velocity oscillations. Asymptotically, i.e. for ‘large times’, the shallow water model and the weakly compressible Navier–Stokes model agree well with the experimental data, since the classical SWE assumptions are satisfied only at large times.

Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2152
Author(s):  
Gonzalo García-Alén ◽  
Olalla García-Fonte ◽  
Luis Cea ◽  
Luís Pena ◽  
Jerónimo Puertas

2D models based on the shallow water equations are widely used in river hydraulics. However, these models can present deficiencies in those cases in which their intrinsic hypotheses are not fulfilled. One of these cases is in the presence of weirs. In this work we present an experimental dataset including 194 experiments in nine different weirs. The experimental data are compared to the numerical results obtained with a 2D shallow water model in order to quantify the discrepancies that exist due to the non-fulfillment of the hydrostatic pressure hypotheses. The experimental dataset presented can be used for the validation of other modelling approaches.


2013 ◽  
Vol 57 (03) ◽  
pp. 125-140
Author(s):  
Daniel A. Liut ◽  
Kenneth M. Weems ◽  
Tin-Guen Yen

A quasi-three-dimensional hydrodynamic model is presented to simulate shallow water phenomena. The method is based on a finite-volume approach designed to solve shallow water equations in the time domain. The nonlinearities of the governing equations are considered. The methodology can be used to compute green water effects on a variety of platforms with six-degrees-of-freedom motions. Different boundary and initial conditions can be applied for multiple types of moving platforms, like a ship's deck, tanks, etc. Comparisons with experimental data are discussed. The shallow water model has been integrated with the Large Amplitude Motions Program to compute the effects of green water flow over decks within a time-domain simulation of ship motions in waves. Results associated to this implementation are presented.


2020 ◽  
Author(s):  
Isabel Echeverribar ◽  
Pilar Brufau ◽  
Pilar García-Navarro

<p><span><strong>There is a wide range of geophysical flows, such as flow in open channels and rivers, tsunami and flood modeling, that can be mathematically represented by the non-linear shallow water 1D equations involving hydrostatic pressure assumptions as an approximation of the Navier Stokes equations. In this context, special attention must be paid to bottom source terms integration and numerical corrections when dealing with wet/dry fronts or strong slopes in order to obtain physically-based solutions (Murillo and García-Navarro, 2010) in complex and realistic cases with irregular topography. However, although these numerical corrections have been developed in recent years achieving not only more robust models but also more accurate results, they still might find a limit when dealing with specific scenarios where vertical information or disspersive effects become crucial. This work presents a 1D shallow water model that introduces vertical information by means of a non-hydrostatic pressure correction when necessary. In particular, the pressure correction method (Hirsch, 2007) is applied to a 1D finite volume scheme for a rectification of the velocity field in free surface scenarios. It is solved by means of an implicit scheme, whereas the depth-integrated shallow water equations are solved using an explicit scheme. It is worth highlighting that it preserves all the advantages and numerical fixes aforementioned for the pure shallow water system. Computations with and without non-hydrostatic corrections are compared for the same cases to test the validity of the conventional hydrostatic pressure assumption at some scenarios involving complex topography.</strong></span></p><p><span>[1] J. Murillo and P. Garcia-Navarro, Weak solutions for partial differential equations with source terms: application to the shallow water equations, Journal of Computational Physics, vol. 229, iss. 11, pp. 4327-4368, 2010.</span></p><p><span>[2] C. Hirsch, Numerical Computation of Internal and External flows: The fundamentals of Computational Fluid Dynamics, Butterworth-Heinemann, 2007.</span></p>


2009 ◽  
Vol 619 ◽  
pp. 367-376 ◽  
Author(s):  
V. K. BIRMAN ◽  
E. MEIBURG ◽  
B. KNELLER

Field observations indicate that the height of submarine levees decays with distance from the channel either exponentially or according to a power law. This investigation clarifies the flow conditions that lead to these respective shapes, via a shallow water model for the overflow currents that govern the levee formation. The model is based on a steady state balance of sediment supply by the turbidity current, and sediment deposition onto the levee, with the settling velocity and the entrainment rate appearing as parameters. It demonstrates that entrainment of ambient fluid is the determining factor for the levee shape. For negligible entrainment rates, levee shapes tend to exhibit exponential profiles, while constant rates of entrainment or detrainment result in power law shapes. Interestingly, whether a levee has an exponential or a power law shape is determined by kinematic considerations only, viz. the balance laws for sediment mass and fluid volume. We find that the respective coefficients governing the exponential or power law decay depend on the settling speeds of the sediment grains, which in turn is a function of the grain size. Two-dimensional, unsteady Navier–Stokes simulations confirm the emergence of a quasi-steady state. The depositional behaviour of this quasi-steady state is consistent with the predictions of the shallow water model, thus validating the assumptions underlying the model, and demonstrating its predictive abilities.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Nugool Sataporn ◽  
Worasait Suwannik ◽  
Montri Maleewong

Compute Unified Device Architecture (CUDA) implementations are presented of a well-balanced finite volume method for solving a shallow water model. The CUDA platform allows programs to run parallel on GPU. Four versions of the CUDA algorithm are presented in addition to a CPU implementation. Each version is improved from the previous one. We present the following techniques for optimizing a CUDA program: limiting register usage, changing the global memory access pattern, and using loop unroll. The accuracy of all programs is investigated in 3 test cases: a circular dam break on a dry bed, a circular dam break on a wet bed, and a dam break flow over three humps. The last parallel version shows 3.84x speedup over the first CUDA implementation. We use our program to simulate a real-world problem based on an assumed partial breakage of the Srinakarin Dam located in Kanchanaburi province, Thailand. The simulation shows that the strong interaction between massive water flows and bottom elevations under wet and dry conditions is well captured by the well-balanced scheme, while the optimized parallel program produces a 57.32x speedup over the serial version.


Sign in / Sign up

Export Citation Format

Share Document