On the necessity of non-hydrostatic pressure models for free surface flow over complex topography

Author(s):  
Isabel Echeverribar ◽  
Pilar Brufau ◽  
Pilar García-Navarro

<p><span><strong>There is a wide range of geophysical flows, such as flow in open channels and rivers, tsunami and flood modeling, that can be mathematically represented by the non-linear shallow water 1D equations involving hydrostatic pressure assumptions as an approximation of the Navier Stokes equations. In this context, special attention must be paid to bottom source terms integration and numerical corrections when dealing with wet/dry fronts or strong slopes in order to obtain physically-based solutions (Murillo and García-Navarro, 2010) in complex and realistic cases with irregular topography. However, although these numerical corrections have been developed in recent years achieving not only more robust models but also more accurate results, they still might find a limit when dealing with specific scenarios where vertical information or disspersive effects become crucial. This work presents a 1D shallow water model that introduces vertical information by means of a non-hydrostatic pressure correction when necessary. In particular, the pressure correction method (Hirsch, 2007) is applied to a 1D finite volume scheme for a rectification of the velocity field in free surface scenarios. It is solved by means of an implicit scheme, whereas the depth-integrated shallow water equations are solved using an explicit scheme. It is worth highlighting that it preserves all the advantages and numerical fixes aforementioned for the pure shallow water system. Computations with and without non-hydrostatic corrections are compared for the same cases to test the validity of the conventional hydrostatic pressure assumption at some scenarios involving complex topography.</strong></span></p><p><span>[1] J. Murillo and P. Garcia-Navarro, Weak solutions for partial differential equations with source terms: application to the shallow water equations, Journal of Computational Physics, vol. 229, iss. 11, pp. 4327-4368, 2010.</span></p><p><span>[2] C. Hirsch, Numerical Computation of Internal and External flows: The fundamentals of Computational Fluid Dynamics, Butterworth-Heinemann, 2007.</span></p>

Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2832 ◽  
Author(s):  
Shin-Jye Liang ◽  
Chih-Chieh Young ◽  
Chi Dai ◽  
Nan-Jing Wu ◽  
Tai-Wen Hsu

A two-dimensional non-hydrostatic shallow-water model for weakly dispersive waves is developed using the least-squares finite-element method. The model is based on the depth-averaged, nonlinear and non-hydrostatic shallow-water equations. The non-hydrostatic shallow-water equations are solved with the semi-implicit (predictor-corrector) method and least-squares finite-element method. In the predictor step, hydrostatic pressure at the previous step is used as an initial guess and an intermediate velocity field is calculated. In the corrector step, a Poisson equation for the non-hydrostatic pressure is solved and the final velocity and free-surface elevation is corrected for the new time step. The non-hydrostatic shallow-water model is verified and applied to both wave and flow driven fluid flows, including solitary wave propagation in a channel, progressive sinusoidal waves propagation over a submerged bar, von Karmann vortex street, and ocean circulations of Dongsha Atolls. It is found hydrostatic shallow-water model is efficient and accurate for shallow water flows. Non-hydrostatic shallow-water model requires 1.5 to 3.0 more cpu time than hydrostatic shallow-water model for the same simulation. Model simulations reveal that non-hydrostatic pressure gradients could affect the velocity field and free-surface significantly in case where nonlinearity and dispersion are important during the course of wave propagation.


2018 ◽  
Vol 40 ◽  
pp. 05032
Author(s):  
Minh H. Le ◽  
Virgile Dubos ◽  
Marina Oukacine ◽  
Nicole Goutal

Strong interactions exist between flow dynamics and vegetation in open-channel. Depth-averaged shallow water equations can be used for such a study. However, explicit representation of vegetation can lead to very high resolution of the mesh since the vegetation is often modelled as vertical cylinders. Our work aims to study the ability of a single porosity-based shallow water model for these applications. More attention on flux and source terms discretizations are required in order to archive the well-balancing and shock capturing properties. We present a new Godunov-type finite volume scheme based on a simple-wave approximation and compare it with some other methods in the literature. A first application with experimental data was performed.


2010 ◽  
Vol 663 ◽  
pp. 456-477 ◽  
Author(s):  
A. FERRARI ◽  
L. FRACCAROLLO ◽  
M. DUMBSER ◽  
E. F. TORO ◽  
A. ARMANINI

In this paper, the wave propagation on a plane dry bottom after a dam break is analysed. Two mathematical models have been used and compared with each other for simulating such a dam-break scenario. First, the fully three-dimensional Navier–Stokes equations for a weakly compressible fluid have been solved using the new smooth particle hydrodynamics formulation, recently proposed by Ferrari et al. (Comput. Fluids, vol. 38, 2009, p. 1203). Second, the two-dimensional shallow water equations (SWEs) are solved using a third-order weighted essentially non-oscillatory finite-volume scheme. The numerical results are critically compared against the laboratory measurements provided by Fraccarollo & Toro (J. Hydraul. Res., vol. 33, 1995, p. 843). The experimental data provide the temporal evolution of the pressure field, the water depth and the vertical velocity profile at 40 gauges, located in the reservoir and in front of the gate. Our analysis reveals the shortcomings of SWEs in the initial stages of the dam-break phenomenon in reproducing many important flow features of the unsteady free-surface flow: the shallow water model predicts a complex wave structure and a wavy evolution of local free-surface elevations in the reservoir that can be clearly identified to be only model artefacts. However, the quasi-incompressible Navier–Stokes model reproduces well the high gradients in the flow field and predicts the cycles of simultaneous rapid decreasing and frozen stages of the free surface in the tank along with the velocity oscillations. Asymptotically, i.e. for ‘large times’, the shallow water model and the weakly compressible Navier–Stokes model agree well with the experimental data, since the classical SWE assumptions are satisfied only at large times.


Proceedings ◽  
2018 ◽  
Vol 2 (20) ◽  
pp. 1307
Author(s):  
Malika Benslimane ◽  
Saâdia Benmamar ◽  
André Paquier

In the world, floods are at the forefront of natural hazard. Urban areas are often at risk of flooding and just as often unprepared for management. Flood modeling is nowadays a very important topic in the theme of water, it inevitably involves the numerical resolution of the shallow water equations derived from the Navier Stocks equations governing flows. Two-dimensional shallow water models with porosity appear as an interesting path for the large-scale modeling of floodplains with urbanized areas. The porosity accounts for the reduction in storage and in the exchange sections due to the presence of buildings and other structures in the floodplain. The introduction of a porosity into the two-dimensional shallow water equations leads to modified expressions for the fluxes and source terms. An extra source term appears in the momentum equation. The developed solution method consists in solving the two-dimensional shallow water equations with porosity via a finite volume scheme solving the conservative form of the equations which can be reduced to a calculation of flux through an edge, a problem that can be approached by a one-dimensional problem in the normal direction at the edge (Riemann problem).


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2152
Author(s):  
Gonzalo García-Alén ◽  
Olalla García-Fonte ◽  
Luis Cea ◽  
Luís Pena ◽  
Jerónimo Puertas

2D models based on the shallow water equations are widely used in river hydraulics. However, these models can present deficiencies in those cases in which their intrinsic hypotheses are not fulfilled. One of these cases is in the presence of weirs. In this work we present an experimental dataset including 194 experiments in nine different weirs. The experimental data are compared to the numerical results obtained with a 2D shallow water model in order to quantify the discrepancies that exist due to the non-fulfillment of the hydrostatic pressure hypotheses. The experimental dataset presented can be used for the validation of other modelling approaches.


Author(s):  
Fatima-zahra Mihami ◽  
Volker Roeber

We present an efficient and robust numerical model for the solution of the Shallow Water Equations with the objective to develop the numerical foundation for an advanced free surface flow solver. The numerical solution is based on an explicit Finite Volume scheme on a staggered grid to ensure the conservation of mass and momentum across flow discontinuities and wet-dry transitions. This leads to an accurate numerical solution at low computational cost without the need for Riemann solvers. The efficiency of the lean numerical structure is further optimized through a CUDA-GPU implementation.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/xMnK_r7Tj1Q


Sign in / Sign up

Export Citation Format

Share Document